OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 30, Iss. 20 — Oct. 15, 2005
  • pp: 2751–2753

Mode cycling in microring optical resonators

Shayan Mookherjea  »View Author Affiliations

Optics Letters, Vol. 30, Issue 20, pp. 2751-2753 (2005)

View Full Text Article

Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electromagnetic resonators are important not only as realizable models of fundamental concepts in classical and quantum physics, based on the existence and properties of eigenmodes, but also in the practical design of lasers, amplifiers, sensors, filters, and delay lines. Coupled-eigenmode systems may be realized via the multiple eigenmodes of a single resonator or by the coupling of a mode across multiple resonators. Mode cycling is demonstrated as a distinct concept of sequential population transfer in coupled multiple-eigenvalue resonators. Based on this principle, a coupled polymeric microring resonator interferometer is fabricated and characterized; the device achieves greater than 30 dB extinction and (loaded) Q approximately 5.5×10^3.

© 2005 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Lasers and Laser Optics

Shayan Mookherjea, "Mode cycling in microring optical resonators," Opt. Lett. 30, 2751-2753 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).
  2. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).
  3. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, IEEE Photon. Technol. Lett. 12, 320 (2000). [CrossRef]
  4. D. Rabus, M. Hamacher, H. Heidrich, and U. Troppenz, IEEE Photon. Technol. Lett. 14, 1442 (2002). [CrossRef]
  5. A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, Opt. Lett. 28, 1567 (2003).
  6. C.-Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003). [CrossRef]
  7. P. Rabiei, W. H. Steier, C. Zhang, and L. Dalton, IEEE Photon. Technol. Lett. 20, 1968 (2002).
  8. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  9. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, Opt. Lett. 20, 1835 (1995).
  10. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
  11. H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, 2000).
  12. G. T. Paloczi, Y. Huang, A. Yariv, and S. Mookherjea, Opt. Express 11, 2666 (2003).
  13. G. M. Hale and M. R. Querry, Appl. Opt. 12, 555 (1973).
  14. S. Suzuki, Y. Hatakeyama, Y. Kokubun, and S. T. Chu, J. Lightwave Technol. 20, 745 (2002). [CrossRef]
  15. P. Katila, P. Heimala, and J. Aarnio, Electron. Lett. 32, 1005 (1996).
  16. T. J. Wang, Y. H. Huang, and H. L. Chen, IEEE Photon. Technol. Lett. 17, 582 (2005).
  17. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookerjea, D. Psaltis, and Y. Fainman, Appl. Phys. Lett. 85, 6119 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited