OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 4 — Feb. 15, 2005
  • pp: 406–408

High-energy saturable absorber mode-locked fiber laser system

Janet W. Lou and Marc Currie  »View Author Affiliations

Optics Letters, Vol. 30, Issue 4, pp. 406-408 (2005)

View Full Text Article

Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a mode-locked erbium-doped fiber laser with a 1-µm InGaAs saturable absorber that produces 84-ps, 1-nJ transform-limited pulses. Measurements of the InGaAs multiple quantum well revealed a slow saturable absorber that is useful for passive mode locking. Optical fiber was added to extend the cavity and vary the repetition rate from 51 kHz to 5.4 MHz. The narrow spectral width of the laser output (<0.04 nm) permits amplification to 0.2 µJ/pulse with minimal pulse broadening. Pulse energies as large as 1.7 µJ can be achieved with pulse widths of <330 ps. Average powers of 0.5 W at megahertz repetition rates are demonstrated.

© 2005 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3560) Lasers and laser optics : Lasers, ring
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

Janet W. Lou and Marc Currie, "High-energy saturable absorber mode-locked fiber laser system," Opt. Lett. 30, 406-408 (2005)

Sort:  Author  |  Journal  |  Reset


  1. R. D. Peterson and K. L. Schepler, Appl. Opt. 42, 7191 (2003).
  2. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, and R. Moncorgé, Opt. Lett. 27, 1980 (2002).
  3. V. N. Philippov, A. V. Kir'yanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
  4. G. Imeshev, I. Hartl, and M. E. Fermann, Opt. Lett. 29, 679 (2004).
  5. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
  6. S. Gray and A. B. Grudinin, Opt. Fiber Technol. 2, 241 (1996).
  7. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, Opt. Lett. 20, 875 (1995).
  8. E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, Appl. Phys. Lett. 74, 3927 (1999).
  9. S. Thai, M. Getbehead, and A. Pirich, Proc. SPIE 4042 17 (2000).
  10. R. Paschotta and U. Keller, Appl. Phys. B 73, 653 (2001).
  11. C. Kittel and H. Kroemer, Thermal Physics, 2nd ed., (Freeman, New York, 1980).
  12. M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiovanni, and O. B. Hansen, Electron. Lett. 27, 1734 (1991).
  13. G. P. Agrawal, Nonlinear Fibers Optics, 3rd ed., (Academic, San Diego, Calif., 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited