OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 16 — Aug. 15, 2006
  • pp: 2429–2431

Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating

Yeonee Seol, Amanda E. Carpenter, and Thomas T. Perkins  »View Author Affiliations

Optics Letters, Vol. 31, Issue 16, pp. 2429-2431 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gold nanoparticles appear to be superior handles in optical trapping assays. We demonstrate that relatively large gold particles ( R b = 50 nm ) indeed yield a sixfold enhancement in trapping efficiency and detection sensitivity as compared to similar-sized polystyrene particles. However, optical absorption by gold at the most common trapping wavelength ( 1064 nm ) induces dramatic heating ( 266 ° C W ) . We determined this heating by comparing trap stiffness from three different methods in conjunction with detailed modeling. Due to this heating, gold nanoparticles are not useful for temperature-sensitive optical-trapping experiments, but may serve as local molecular heaters. Also, such particles, with their increased detection sensitivity, make excellent probes for certain zero-force biophysical assays.

© 2006 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(160.3900) Materials : Metals
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 21, 2006
Manuscript Accepted: May 10, 2006
Published: July 25, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Yeonee Seol, Amanda E. Carpenter, and Thomas T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt. Lett. 31, 2429-2431 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Daniel and D. Astruc, Chem. Rev. (Washington, D.C.) 104, 293 (2004).
  2. K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994). [CrossRef] [PubMed]
  3. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005). [CrossRef] [PubMed]
  4. L. Nugent-Glandorf and T. T. Perkins, Opt. Lett. 29, 2611 (2004). [CrossRef] [PubMed]
  5. K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994). [CrossRef] [PubMed]
  6. K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004). [CrossRef]
  7. R. C. Weast, CRC Handbook of Chemistry and Physics, (CRC, 1984).
  8. K. Pustovalov, Int. J. Heat Mass Transfer 36, 391 (1993). [CrossRef]
  9. A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Microsc. Res. Tech. 44, 378 (1999). [CrossRef] [PubMed]
  10. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004). [CrossRef]
  11. L. Finzi and J. Gelles, Science 267, 378 (1995). [CrossRef] [PubMed]
  12. D. E. Segall, P. C. Nelson, and R. Phillips, Phys. Rev. Lett. 96, 088306 (2006). [CrossRef] [PubMed]
  13. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, Biophys. J. 84, 1308 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited