OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 17 — Sep. 1, 2006
  • pp: 2520–2522

Linear and angular coherence momenta in the classical second-order coherence theory of vector electromagnetic fields

Wei Wang and Mitsuo Takeda  »View Author Affiliations


Optics Letters, Vol. 31, Issue 17, pp. 2520-2522 (2006)
http://dx.doi.org/10.1364/OL.31.002520


View Full Text Article

Enhanced HTML    Acrobat PDF (62 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new concept of vector and tensor densities is introduced into the general coherence theory of vector electromagnetic fields that is based on energy and energy-flow coherence tensors. Related coherence conservation laws are presented in the form of continuity equations that provide new insights into the propagation of second-order correlation tensors associated with stationary random classical electromagnetic fields.

© 2006 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: May 8, 2006
Revised Manuscript: June 27, 2006
Manuscript Accepted: June 27, 2006
Published: August 9, 2006

Citation
Wei Wang and Mitsuo Takeda, "Linear and angular coherence momenta in the classical second-order coherence theory of vector electromagnetic fields," Opt. Lett. 31, 2520-2522 (2006)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-17-2520


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  2. J. W. Goodman, Statistical Optics (Wiley, 2000).
  3. A. S. Marathay, Elements of Optical Coherence Theory (Wiley, 1982).
  4. E. Wolf, Phys. Lett. A 312, 263 (2003). [CrossRef]
  5. E. Wolf, Nuovo Cimento 12, 884 (1954). [CrossRef]
  6. E. Wolf, in Proceedings of the Symposium on Astronomical Optics, Z.Kopal, ed. (North-Holland, 1956), pp. 177-185.
  7. P. Roman and E. Wolf, Nuovo Cimento 17, 462 (1960). [CrossRef]
  8. P. Roman and E. Wolf, Nuovo Cimento 17, 477 (1960). [CrossRef]
  9. H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, Opt. Lett. 28, 968 (2003). [CrossRef] [PubMed]
  10. G. Gbur and T. D. Visser, Opt. Commun. 222, 117 (2003). [CrossRef]
  11. W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, Phys. Rev. Lett. 96, 073902 (2006). [CrossRef] [PubMed]
  12. L. Allen, M. J. Padgett, and M. Babiker, Progress in Optics, E.Wolf, ed. (North-Holland, 1999), Vol. 34, pp. 291-372. [CrossRef]
  13. W. Wang and M. Takeda, Phys. Rev. Lett. 96, 223904 (2006). [CrossRef] [PubMed]
  14. J. D. Jackson, Classical Electrodynamics (Wiley, 1998), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited