OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 17 — Sep. 1, 2006
  • pp: 2610–2612

Polymeric, electrically tunable diffraction grating based on artificial muscles

Manuel Aschwanden and Andreas Stemmer  »View Author Affiliations

Optics Letters, Vol. 31, Issue 17, pp. 2610-2612 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a low-cost, electrically tunable diffraction grating that is driven by a dielectric elastomer actuator. The angular tuning range of the polymer-based device is up to 118 mrad for the first diffracted order. The achievable grating period change of 32% is an improvement by more than a factor of 150 compared with existing analog tunable diffraction gratings based on hard materials. We show that in combination with a white light source, the presented diffraction grating can be used as a wavelength-adjustable luminous source. Such an illuminant has a potential application in inexpensive color displays that could reproduce all perceivable colors.

© 2006 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.1950) Optical devices : Diffraction gratings
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Optical Devices

Original Manuscript: April 11, 2006
Revised Manuscript: June 10, 2006
Manuscript Accepted: June 13, 2006
Published: August 9, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Manuel Aschwanden and Andreas Stemmer, "Polymeric, electrically tunable diffraction grating based on artificial muscles," Opt. Lett. 31, 2610-2612 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, Opt. Lett. 17, 688 (1992). [CrossRef] [PubMed]
  2. A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999). [CrossRef]
  3. C. W. Wong, Y. Jeon, G. Barbastathis, and S.-G. Kim, Appl. Opt. 42, 621 (2003). [CrossRef] [PubMed]
  4. J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004). [CrossRef]
  5. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287, 836 (2000). [CrossRef] [PubMed]
  6. D. H. Raguin and G. M. Morris, Appl. Opt. 32, 2582 (1993). [CrossRef] [PubMed]
  7. R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, in Proc. SPIE 4695, 126 (2002). [CrossRef]
  8. Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002). [CrossRef] [PubMed]
  9. C. Huang and Q. M. Zhang, Appl. Phys. Lett. 82, 3502 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited