OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 22 — Nov. 15, 2006
  • pp: 3288–3290

Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing

Pavel Ginzburg, David Arbel, and Meir Orenstein  »View Author Affiliations


Optics Letters, Vol. 31, Issue 22, pp. 3288-3290 (2006)
http://dx.doi.org/10.1364/OL.31.003288


View Full Text Article

Enhanced HTML    Acrobat PDF (334 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The seamless transition between microscale photonics and nanoscale plasmonics requires overpassing different waveguiding mechanisms and a few orders of magnitude in the lateral dimension. Exploiting gap plasmon–polariton waves both at the microscale and nanoscale with an ultrashort (few micrometers) non adiabatic tapered gap plasmon waveguide, we show theoretically that very high-power transfer efficiency ( 70 % ) is achieved. The same mechanism may be used to harvest impinging light waves and direct them into a nanhole or slit to exhibit an anomalous transmission without the conventional periodic structures. The interplay of plasmonic and oscillating modes is analyzed.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

History
Original Manuscript: June 19, 2006
Revised Manuscript: August 14, 2006
Manuscript Accepted: August 26, 2006
Published: October 26, 2006

Citation
Pavel Ginzburg, David Arbel, and Meir Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288-3290 (2006)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-22-3288


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons (Springer-Verlag, 1988), Vol. 111.
  2. J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986). [CrossRef]
  3. P. Berini, Phys. Rev. B 61, 10484 (2000). [CrossRef]
  4. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Skrzek, Opt. Lett. 25, 844 (2000). [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998). [CrossRef]
  7. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  8. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, Appl. Phys. Lett. 82, 668 (2003). [CrossRef]
  9. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, Opt. Express 12, 5481 (2004). [CrossRef] [PubMed]
  10. P. Ginzburg, D. Arbel, and M. Orenstein, in Integrated Photonics Research and Applications--IPRA 2005 (Optical Society of America, 2005), paper JWA6.
  11. K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003). [CrossRef]
  12. E. N. Economou, Phys. Rev. 182, 539 (1969). [CrossRef]
  13. I. P. Kaminow, W. L. Mammel, and H. P. Weber, Appl. Opt. 13, 396 (1974). [CrossRef] [PubMed]
  14. B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991). [CrossRef]
  15. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, J. Opt. Soc. Am. A 21, 2442 (2004). [CrossRef]
  16. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 73, 035407 (2006). [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  18. A. D. Oliver, Microwave Horns and Feeds (IEEE, 1994). [CrossRef]
  19. I. Breukelaar, R. Charbonneau, and P. Berini, Appl. Phys. Lett. 88, 051119 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited