OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 10 — May. 15, 2007
  • pp: 1326–1328

Application of Mie theory to determine the structure of spheroidal scatterers in biological materials

Justin D. Keener, Kevin J. Chalut, John W. Pyhtila, and Adam Wax  »View Author Affiliations


Optics Letters, Vol. 32, Issue 10, pp. 1326-1328 (2007)
http://dx.doi.org/10.1364/OL.32.001326


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present here the results of a numerical study on light scattering from nonspherical particles with relevance to detecting precancerous states in epithelial tissues. In previous studies of epithelial cell nuclei, the experimental light scattering data have been analyzed by comparison with Mie theory. However, given the spheroidal shape of many cell nuclei, the validity of this assumption demands a thorough investigation. We investigate this assumption by using the T-matrix method to model light scattered from spheroids with parameters relevant to epithelial cell nuclei. In our previous studies, we have developed a data analysis procedure that extracts the oscillatory component of the angular-scattering distribution for an ensemble of epithelial cell nuclei for comparison with Mie theory. We demonstrate that application of our analysis procedure to the predictions of the T-matrix method for spheroids, oriented such that their axis of symmetry is aligned with the incident light propagation direction, generally yields the spheroid dimension that is transverse to the incident light propagation direction with subwavelength accuracy.

© 2007 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(290.1350) Scattering : Backscattering
(290.3200) Scattering : Inverse scattering

ToC Category:
Scattering

History
Original Manuscript: January 2, 2007
Revised Manuscript: February 19, 2007
Manuscript Accepted: February 20, 2007
Published: April 17, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Justin D. Keener, Kevin J. Chalut, John W. Pyhtila, and Adam Wax, "Application of Mie theory to determine the structure of spheroidal scatterers in biological materials," Opt. Lett. 32, 1326-1328 (2007)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-10-1326

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited