OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 15 — Aug. 1, 2007
  • pp: 2182–2184

Umbilic point screening in random optical fields

Isaac Freund, Roman I. Egorov, and Marat S. Soskin  »View Author Affiliations

Optics Letters, Vol. 32, Issue 15, pp. 2182-2184 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Umbilic points—singular points of curvature characterized by a fractional topological charge q = ± 1 2 —are the most numerous of all special points in the landscape of random optical fields (speckle patterns), outnumbering maxima, minima, saddle points, and optical vortices. To the best of our knowledge, we present the first experimental evidence that positive and negative umbilic points screen one another. Theory predicts that in the absence of screening the charge variance in a bounded region is proportional to the area of the region, whereas in the presence of screening the variance is drastically reduced and is proportional to the perimeter. Our data confirm this latter prediction and provide the first estimates of the screening lengths for umbilic points of the intensity and of the amplitude (field modulus).

© 2007 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(290.0290) Scattering : Scattering
(290.5880) Scattering : Scattering, rough surfaces
(350.0350) Other areas of optics : Other areas of optics

ToC Category:
Coherence and Statistical Optics

Original Manuscript: April 2, 2007
Revised Manuscript: April 20, 2007
Manuscript Accepted: May 25, 2007
Published: July 23, 2007

Isaac Freund, Roman I. Egorov, and Marat S. Soskin, "Umbilic point screening in random optical fields," Opt. Lett. 32, 2182-2184 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. B. I. Halperin, Physics of Defects, R.Balian, M.Kleman, and J.-P.Poirier, eds. (North-Holland, 1981), p. 814.
  2. B. W. Roberts, E. Bodenschatz, and J. P. Sethna, Physica D 99, 252 (1996). [CrossRef]
  3. I. Freund and M. Wilkinson, J. Opt. Soc. Am. A 15, 2892 (1998). [CrossRef]
  4. M. V. Berry and M. R. Dennis, Proc. R. Soc. London Ser. A 456, 2059 (2000). [CrossRef]
  5. M. V. Berry and M. R. Dennis, Proc. R. Soc. London Ser. A 456, 3048 (2000).
  6. G. Foltin, J. Phys. A 36, 1729 (2003). [CrossRef]
  7. G. Foltin, J. Phys. A 36, 4561 (2003). [CrossRef]
  8. M. R. Dennis, J. Phys. A 36, 6628 (2003).
  9. M. Wilkinson, J. Phys. A 37, 6763 (2004). [CrossRef]
  10. G. Foltin, S. Gnutzmann, and U. Smilansky, J. Phys. A 37, 11363 (2004). [CrossRef]
  11. S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, 1994).
  12. J. F. Nye and M. V. Berry, Proc. R. Soc. London Ser. A 336, 2165 (1974).
  13. N. B. Baranova, B. Ya Zel'dovich, A. V. Mamaev, N. Pilipetskii and V. V. Shkukov, JETP Lett. 33, 195 (1981).
  14. V. Yu Bazhenov, M. V. Vasnetsov, and M. S. Soskin, JETP Lett. 52, 429 (1990).
  15. M. S. Soskin and M. V. Vasnetsov, Progress in Optics, E.Wolf, ed. (Elsevier, 2001), p. 219. [CrossRef]
  16. M. V. Berry and J. H. Hannay, J. Phys. A 10, 1809 (1977). [CrossRef]
  17. A. S. Thorndike, C. R. Cooley, and J. F. Nye, J. Phys. A 11, 1455 (1978). [CrossRef]
  18. M. V. Berry and M. Wilkinson, Proc. R. Soc. London Ser. A 392, 15 (1984). [CrossRef]
  19. L. Hesselink, Y. Levy, and Y. Lavin, IEEE Trans. Vis. Comput. Graph. 3, 1 (1997). [CrossRef]
  20. J. F. Nye, Natural Focusing and Fine Structure of Light (IOP, 1999).
  21. M. R. Dennis, Opt. Commun. 213, 201 (2002). [CrossRef]
  22. M. V. Berry, J. Phys. A. 40, F185 (2007). [CrossRef]
  23. M. S. Soskin, R. I. Egorov, and I. Freund, Opt. Lett. 32, 891 (2007). [CrossRef] [PubMed]
  24. Because the absolute intensity of the optical field is generally of no interest, one can scale (attenuate) I so that ∣∇I∣⪡1, in which case Gaussian curvature K=(IxxIyy−Ixy2)/(1+∣∇I∣2)2=λ+λ−, and mean curvature C=(λ++λ−)/2, where λ+/- are the eigenvalues of M.
  25. M. Soskin, V. Denisenko, and R. Egorov, J. Opt. A 6, S281 (2004). [CrossRef]
  26. I. Freund, Opt. Lett. 26, 1996 (2001). [CrossRef]
  27. Although branch cuts are convenient, visually prominent markers, any contour value can be used. The reason is that a suitable redefinition of the zero of phase can convert any contour into a branch cut.
  28. I. Freund and N. Shvartsman, Phys. Rev. A 50, 5164 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited