OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 19 — Oct. 1, 2007
  • pp: 2837–2839

Flux vector formulation for photon propagation in the biological tissue

W. Cong, A. Cong, H. Shen, Y. Liu, and G. Wang  »View Author Affiliations

Optics Letters, Vol. 32, Issue 19, pp. 2837-2839 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a generalized delta-Eddington phase function to simplify the radiative transfer equation to an integral equation with respect to the photon flux vector. The solution of the integral equation is highly accurate to model the photon propagation in the biological tissue over a broad range of optical parameters, especially in the visible light spectrum where the diffusion approximation breaks down. The methodology is validated in the Monte Carlo simulation and can be applied in various optical imaging applications.

© 2007 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 5, 2007
Revised Manuscript: August 23, 2007
Manuscript Accepted: August 28, 2007
Published: September 25, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

W. Cong, A. Cong, H. Shen, Y. Liu, and G. Wang, "Flux vector formulation for photon propagation in the biological tissue," Opt. Lett. 32, 2837-2839 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 1.
  2. A. J. Welch and M. J. C. van Gemert, Optical and Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  3. C. H. Contag and M. H. Bachmann, Annu. Rev. Biomed. Eng. 4, 235 (2002). [CrossRef] [PubMed]
  4. J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, J. Opt. Soc. Am. A 22, 546 (2005). [CrossRef]
  5. A. D. Klose and E. W. Larsen, J. Comput. Phys. 220, 441 (2006). [CrossRef]
  6. J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, J. Atmos. Sci. 33, 2452 (1976). [CrossRef]
  7. S. R. Arridge, Inverse Probl. 15, R41 (1999). [CrossRef]
  8. F. Natterer and F. Wubbeling, Mathematical Methods in Image Reconstruction (SIAM, 2001). [CrossRef]
  9. M. Keijzer, W. M. Star, and P. R. M. Storchi, Appl. Opt. 27, 1820 (1988). [CrossRef] [PubMed]
  10. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, Appl. Opt. 22, 2456 (1983). [CrossRef] [PubMed]
  11. S. S. Rao, The Finite Element Method in Engineering (Butterworth-Heinemann, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited