OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 19 — Oct. 1, 2007
  • pp: 2861–2863

Efficient fiber-to-waveguide coupling through the vertical leakage from a microring

Zhaolin Lu  »View Author Affiliations

Optics Letters, Vol. 32, Issue 19, pp. 2861-2863 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fiber-to-waveguide coupler is proposed to efficiently couple light from a single-mode fiber into a submicrometer semiconductor waveguide for integration with optoelectronic circuits. A microring with a specific refractive index is designed on the top of the semiconductor waveguide. The gradual vertical leakage from the microring forms steady coupling into the semiconductor waveguide. Coupling efficiency up to 93% is demonstrated using the three-dimensional finite-difference time-domain method. A tapered-waveguide or microring structure can be used to convert the lateral-mode size for coupling light into a single-mode semiconductor waveguide.

© 2007 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices
(130.5990) Integrated optics : Semiconductors
(230.7400) Optical devices : Waveguides, slab
(240.7040) Optics at surfaces : Tunneling

ToC Category:
Integrated Optics

Original Manuscript: July 3, 2007
Manuscript Accepted: August 22, 2007
Published: September 27, 2007

Zhaolin Lu, "Efficient fiber-to-waveguide coupling through the vertical leakage from a microring," Opt. Lett. 32, 2861-2863 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973). [CrossRef]
  2. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002). [CrossRef]
  3. Z. Lu and D. W. Prather, Opt. Lett. 29, 1748 (2004). [CrossRef] [PubMed]
  4. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. W. Prather, Opt. Express 11, 3555 (2003). [CrossRef] [PubMed]
  5. S. Janz, B. Lamontagne, A. Delage, A. Bogdanov, D.-X. Xu, and K. P. Xu, in 2nd IEEE International Conference on Group IV Photonics (IEEE, 2005), pp. 129-131.
  6. C. Choi, Y. Liu, L. Lin, L. Wang, J. Choi, D. Haas, J. Magera, and R. T. Chen, Proc. SPIE 5358, 122 (2004). [CrossRef]
  7. V. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003). [CrossRef] [PubMed]
  8. A. L. Bachim, O. O. Ogunsola, and T. K. Gaylord, Opt. Lett. 30, 2080 (2005). [CrossRef] [PubMed]
  9. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).
  10. D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, Opt. Lett. 27, 1601 (2002). [CrossRef]
  11. P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, Appl. Phys. Lett. 81, 4895 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited