OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 21 — Nov. 1, 2007
  • pp: 3071–3073

Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining

Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao  »View Author Affiliations

Optics Letters, Vol. 32, Issue 21, pp. 3071-3073 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A miniature in-line fiber-optic Fabry–Perot etalon is fabricated on a photonic crystal fiber (PCF) by using 157 nm laser micromachining for the first time to our knowledge. Experimental results show that such a PCF-based etalon has an excellent fringe visibility of up to 26 dB due to the mirror-finish quality of the two cavity surfaces inside the PCF. This etalon can be used as an ideal sensor for precise strain measurement under high temperature of up to 800 ° C . It can also offer some other outstanding advantages, such as fast and easy fabrication, high reproducibility, capacity of mass production, low cost, low temperature–strain cross-sensitivity, and high signal-to-noise ratio.

© 2007 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3390) Lasers and laser optics : Laser materials processing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 31, 2007
Revised Manuscript: September 14, 2007
Manuscript Accepted: September 18, 2007
Published: October 15, 2007

Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, "Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining," Opt. Lett. 32, 3071-3073 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, L. I. Yawen, M. J. Cima, and R. A. Langer, Proc. IEEE 92, 6 (2004). [CrossRef]
  2. B. Culshaw and J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech, 1989), Vol. 2.
  3. Y. J. Rao, Meas. Sci. Technol. 8, 355 (1997). [CrossRef]
  4. A. D. Kersey, D. A. Jackson, and M. Corke, Opt. Commun. 45, 71 (1983). [CrossRef]
  5. Y. J. Rao, Opt. Fiber Technol. 12, 227 (2006). [CrossRef]
  6. T. W. Kao and H. F. Tayler, Opt. Lett. 21, 615 (1996). [CrossRef] [PubMed]
  7. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, Opt. Lett. 18, 1973 (1993). [CrossRef] [PubMed]
  8. Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, IEEE Photon. Technol. Lett. 17, 2403 (2005). [CrossRef]
  9. V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhamtskaya, and R. H. Nobes, Int. J. Quantum Chem. 77, 895 (2000). [CrossRef]
  10. J. Z. Li, P. R. Herman, M. D. Wei, K. P. Chen, J. Ihlemann, G. Marowsky, P. Oesterlin, and B. Burghardt, Proc. SPIE 4637, 228 (2002). [CrossRef]
  11. X. P. Chen, F. B. Shen, Z. Wang, Z. Y. Huang, and A. B. Wang, Appl. Opt. 45, 7760 (2006). [CrossRef] [PubMed]
  12. P. Russell, Science 299, 358 (2003). [CrossRef] [PubMed]
  13. V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, Electron. Lett. 32, 247 (1996). [CrossRef]
  14. Y. Kikuchi, H. Sudo, and N. Kuzuu, J. Appl. Phys. 82, 4121 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited