OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 21 — Nov. 1, 2007
  • pp: 3107–3109

Theory of the time reversal cavity for electromagnetic fields

R. Carminati, R. Pierrat, J. de Rosny, and M. Fink  »View Author Affiliations

Optics Letters, Vol. 32, Issue 21, pp. 3107-3109 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive a general expression of the electric dyadic Green function in a time-reversal cavity, based on vector diffraction theory in the frequency domain. Our theory gives a rigorous framework to time-reversal experiments using electromagnetic waves and suggests a methodology to design structures generating subwavelength focusing after time reversal.

© 2007 Optical Society of America

OCIS Codes
(190.5040) Nonlinear optics : Phase conjugation
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: July 6, 2007
Revised Manuscript: September 26, 2007
Manuscript Accepted: October 1, 2007
Published: October 19, 2007

R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, "Theory of the time reversal cavity for electromagnetic fields," Opt. Lett. 32, 3107-3109 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fink, Phys. Today 20(12), 34 (1997). [CrossRef]
  2. G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, Phys. Rev. Lett. 92, 193904 (2004). [CrossRef] [PubMed]
  3. C. Draeger and M. Fink, Phys. Rev. Lett. 79, 407 (1997). [CrossRef]
  4. J. de Rosny and M. Fink, Phys. Rev. Lett. 89, 124301 (2002). [CrossRef] [PubMed]
  5. R. Carminati, J. J. Sáenz, J.-J. Greffet, and M. Nieto-Vesperinas, Phys. Rev. A 62, 012712 (2000). [CrossRef]
  6. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, Science 315, 1120 (2007). [CrossRef] [PubMed]
  7. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, 2nd ed. (World Science, 2006).
  8. D. Cassereau and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 579 (1992). [CrossRef] [PubMed]
  9. The vector form of Sommerfeld's radiation condition reads limr′-->∞[∇r′×G⃡(r′,r,ω)−iku×G⃡(r′,r,ω)]=0, where k=ω/c, r′=∣r′∣, and u=r′/r′. This condition states that G⃡ behaves as an outgoing (retarded) wave.
  10. For two well-behaved vector fields A(r) and B(r), the second Green identity reads as ∫V[A∙∇×∇×B−B∙∇×∇×A]d3r=∫S[B×∇×A−A×∇×B]∙nd2r, where V is a volume enclosed by surface S and n is the outward normal. See Refs. .
  11. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).
  12. For any dyadic D⃡ and any vectors U and V, one has U∙D⃡V=V∙D⃡TU.
  13. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, 1984), Sect. 89.
  14. R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, J. Opt. Soc. Am. A 15, 706 (1998). [CrossRef]
  15. J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997). [CrossRef]
  16. E. R. Méndez, J.-J. Greffet, and R. Carminati, Opt. Commun. 142, 7 (1997). [CrossRef]
  17. R. L. Weaver and O. I. Lobkis, Phys. Rev. Lett. 87, 134301 (2001). [CrossRef] [PubMed]
  18. K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, Phys. Rev. B 68, 245405 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited