OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 22 — Nov. 15, 2007
  • pp: 3327–3329

Two-photon-induced laser annealing for enhancement of photoluminescence intensity in ZnSe crystal

Makoto Torizawa and Yoshimasa Kawata  »View Author Affiliations

Optics Letters, Vol. 32, Issue 22, pp. 3327-3329 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the finding that photoluminescence intensity in ZnSe crystal is enhanced after exposure to a femtosecond laser beam. After the crystal was illuminated with laser light of 1.04 MW cm 2 during 300 s , photoluminescence intensity was increased approximately 20%. The region in which photoluminescence intensity was enhanced was localized in the optical axis, because this phenomenon occurred in the two-photon excitation process. It is possible to achieve three-dimensional control of photoluminescence intensity by illumination with laser light.

© 2007 Optical Society of America

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: June 20, 2007
Manuscript Accepted: July 11, 2007
Published: November 8, 2007

Makoto Torizawa and Yoshimasa Kawata, "Two-photon-induced laser annealing for enhancement of photoluminescence intensity in ZnSe crystal," Opt. Lett. 32, 3327-3329 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. Y. Kawata, S. Kunieda, and T. Kaneko, Opt. Lett. 27, 297 (2002). [CrossRef]
  2. M. Torizawa and Y. Kawata, Appl. Phys. Lett. 88, 221105 (2006). [CrossRef]
  3. C. H. Kim, I. H. Song, W. J. Nam, and M. K. Han, J. Non-Cryst. Solids 299-302, 721 (2002). [CrossRef]
  4. E. A. Mastio, E. Fogarassy, W. M. Cranton, and C. B. Thomas, Appl. Surf. Sci. 154-155, 35 (2000). [CrossRef]
  5. P. Boher, J. L. Stehle, and E. Fogarassy, Appl. Surf. Sci. 138-139, 199 (1999). [CrossRef]
  6. E. V. Manakhov, B. G. Svensson, M. K. Linnarsson, A. L. Magna, V. Privitera, G. Fortunato, and L. Mariucci, Mater. Sci. Eng. 114-115, 114 (2004). [CrossRef]
  7. R. Walker, S. Prawer, D. N. Jamieson, and K. W. Nugent, Diamond Relat. Mater. 8, 2159 (1999). [CrossRef]
  8. J. J. Yu and Y. F. Lu, Appl. Surf. Sci. 154-155, 670 (2000). [CrossRef]
  9. A. Ibi, M. Fujii, T. Akitsu, Y. Saito, and H. Matsuzawa, Physica C 357-360, 730 (2001). [CrossRef]
  10. D. Klinger, M. Lefeld-Sosnowska, J. Auleytner, D. Zymierska, L. Nowicki, A. Stonert, and S. Kwiatkowski, J. Alloys Compd. 328, 242 (2001). [CrossRef]
  11. M. Matsumura and C. H. Oh, Thin Solid Films 337, 123 (1999). [CrossRef]
  12. I. Ozerov, M. Arab, V. I. Safarov, W. Marine, S. Giorgio, M. Sentis, and L. Nanai, Appl. Surf. Sci. 226, 242 (2004). [CrossRef]
  13. S. J. Rhee, S. Kim, C. W. Sterner, J. O. White, and S. G. Bishoop, J. Appl. Phys. 90, 2760 (2001). [CrossRef]
  14. G. Zhang, D. Gu, F. Gan, X. Jiang, and Q. Chen, Thin Solid Films 474, 169 (2005). [CrossRef]
  15. M. Oane and D. Apostol, Opt. Laser Technol. 36, 219 (2004). [CrossRef]
  16. G. Chirico, F. Cannone, G. Baldini, and A. Diaspro, Biophys. J. 84, 588 (2003). [CrossRef] [PubMed]
  17. T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65, 1739 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited