OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 23 — Dec. 1, 2007
  • pp: 3397–3399

High-quality lowest-loss-mode lasing in GaAs quasi-stadium laser diodes having unstable resonators

Takehiro Fukushima, Tomoko Tanaka, and Takahisa Harayama  »View Author Affiliations

Optics Letters, Vol. 32, Issue 23, pp. 3397-3399 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We obtained high-quality lowest-loss-mode lasing in quasi-stadium laser diodes having unstable resonators that consisted of two curved end mirrors and two straight sidewall mirrors. The laser diodes were fabricated by applying a reactive ion etching technique to a metal-organic chemical-vapor deposition–grown graded-index separate-confinement heterostructure single-quantum-well Ga As Al Ga As structure. The electrode contact area of the laser diodes was formed along unstable periodic orbits, along which the optical beams are localized. Highly directional fan-out beams corresponding to the numerically obtained lowest loss mode were emitted from the end mirrors under CW operation at room temperature.

© 2007 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3410) Lasers and laser optics : Laser resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 3, 2007
Manuscript Accepted: October 24, 2007
Published: November 20, 2007

Takehiro Fukushima, Tomoko Tanaka, and Takahisa Harayama, "High-quality lowest-loss-mode lasing in GaAs quasi-stadium laser diodes having unstable resonators," Opt. Lett. 32, 3397-3399 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992). [CrossRef]
  2. A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, Appl. Phys. Lett. 62, 2021 (1993). [CrossRef]
  3. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science 280, 1556 (1998). [CrossRef] [PubMed]
  4. A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000). [CrossRef]
  5. T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, Opt. Express 2, 21 (1998). [CrossRef] [PubMed]
  6. T. Fukushima, J. Lightwave Technol. 18, 2208 (2000). [CrossRef]
  7. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, Opt. Lett. 28, 408 (2003). [CrossRef] [PubMed]
  8. T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro, J. Opt. Soc. Am. B 21, 935 (2004). [CrossRef]
  9. A. E. Siegman, Lasers (University Science, 1986).
  10. T. Numai, Fundamentals of Semiconductor Lasers (Springer-Verlag, 2004).
  11. D. D. Cook and F. R. Nash, J. Appl. Phys. 46, 1660 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited