OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 23 — Dec. 1, 2007
  • pp: 3429–3431

Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method

Alexei Deinega and Ilya Valuev  »View Author Affiliations

Optics Letters, Vol. 32, Issue 23, pp. 3429-3431 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Staircasing of media properties is one of the intrinsic problems of the finite-difference time-domain method, which reduces its accuracy. There are different approaches for solving this problem, and the most successful of them are based on correct approximation of inverse permittivity tensor ε ̂ 1 at the material interface. We report an application of this tensor method for conductive and dispersive media. For validation, comparisons with analytical solutions and various other subpixel smoothing methods are performed for the Mie scattering from a small sphere.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis

ToC Category:
Optical Devices

Original Manuscript: July 23, 2007
Manuscript Accepted: September 25, 2007
Published: November 27, 2007

Alexei Deinega and Ilya Valuev, "Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method," Opt. Lett. 32, 3429-3431 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. A. Taflove and S. H. Hagness, Computational Electrodynamics: the Finite Difference Time-Domain Method (Artech House, 2000).
  2. S. S. Zivanovic, K. S. Yee, and K. K. Mei, IEEE Trans. Microwave Theory Tech. 38, 471 (1991). [CrossRef]
  3. V. Shankar, A. Mohammadian, and W. F. Hall, Electromagnetics 10, 127 (1990). [CrossRef]
  4. T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore, IEEE Trans. Antennas Propag. 40, 357 (1992). [CrossRef]
  5. A. Mohammadi, H. Nadgaran, and M. Agio, Opt. Express 13, 10367 (2005). [CrossRef] [PubMed]
  6. J.-Y. Lee and N.-H. Myung, Microwave Opt. Technol. Lett. 23, 245 (1999). [CrossRef]
  7. J. Nadobny, D. Sullivan, W. Wlodarczyk, P. Deuflhard, and P. Wust, Lect. Notes Math. 51, 1760 (2003).
  8. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, Opt. Lett. 31, 2972 (2006). [CrossRef] [PubMed]
  9. S. Dey and R. Mittra, IEEE Trans. Microwave Theory Tech. 47, 1737 (1999). [CrossRef]
  10. N. Kaneda, B. Houshmand, and T. Itoh, IEEE Trans. Microwave Theory Tech. 45, 1645 (1997). [CrossRef]
  11. M. Okoniewski, M. Mrozowski, and M. A. Stuchly, IEEE Microw. Guid. Wave Lett. 7, 123 (1997). [CrossRef]
  12. I. Valuev, A. Deinega, A. Knizhnik, and B. Potapkin, Lect. Notes Comput. Sci. 4707, 213 (2007). [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  14. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Appl. Opt. 22, 1099 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited