OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 23 — Dec. 1, 2007
  • pp: 3456–3458

Full-field and real-time surface plasmon resonance imaging thermometry

Il Tai Kim and Kenneth David Kihm  »View Author Affiliations

Optics Letters, Vol. 32, Issue 23, pp. 3456-3458 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (536 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The feasibility of surface plasmon resonance (SPR) imaging thermometry is tested as a potential tool for full-field and real-time temperature field mapping for thermally transient liquid mediums. Using the well-known Kretschmann’s analysis [ Physik 241, 313 (1971) ]. parametric examinations are performed to delineate the effects of important optical properties, including seven different prism materials with different refractive index values and seven different measured dielectric constants for thin gold (Au) films (approximately 47.5 nm in thickness), on the temperature dependence of SPR reflectance intensity variations. Furthermore, a laboratory-implemented real-time SPR thermometry system demonstrates the full-field mapping capabilities for transient temperature field developments in the near-wall region when a hot water droplet ( 80 ° C ) contacts the Au metal surface ( 20 ° C ) and spreads either in an air- or in a water-surrounded environment.

© 2007 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 7, 2007
Revised Manuscript: October 28, 2007
Manuscript Accepted: October 31, 2007
Published: November 29, 2007

Il Tai Kim and Kenneth David Kihm, "Full-field and real-time surface plasmon resonance imaging thermometry," Opt. Lett. 32, 3456-3458 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007). [CrossRef]
  2. H.-P. Chiang, H.-T. Yeh, C.-M. Chen, J.-C. Wu, S.-Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, Opt. Commun. 241, 409 (2004). [CrossRef]
  3. B. Chadwick and M. Gal, Jpn. J. Appl. Phys. 32, 2716 (1993). [CrossRef]
  4. S. K. Ozdemir and G. Turhan-Sayan, J. Lightwave Technol. 21, 805 (2003). [CrossRef]
  5. A. K. Sharma and B. D. Gupta, Opt. Fiber Technol. 12, 87 (2006). [CrossRef]
  6. J. Zeng, D. Liang, and Z. Cao, Proc. SPIE 5855, 667 (2005). [CrossRef]
  7. E. Z. Kretschmann, Physik 241, 313 (1971). [CrossRef]
  8. H. P. Chaing, P. T. Leung, and W. S. Tse, J. Chem. Phys. 108, 2659 (1998). [CrossRef]
  9. ωp=ωp0[1+3γ(T−T0)]−1/2, where ωp0 is the plasma frequency at reference temperature T0 and γ is the thermal linear expansion coefficient of thin metal film.
  10. ωc=ωcp+ωce, where the photon-electron scattering frequency is defined as ωcp(T)=ω0[2/5+4(T/TD)5]∫0TD/Tz4/ez−1dz and the electron-electron scattering frequency is ωce(T)=1/6π4ΓΔ/hEF[(kBT)2+(hω/4π2)2]. Parametric values used for calculations throughout are constant coefficient ω0=1.438×10−14 rad/s, Debye temperature TD=170 K, Fermi energy EF=5.53 eV, Boltzmann constant kB=1.3807×10−23 J/K, and scattering probability Γ=0.55, Fractional Umklapp scattering coefficient Δ=0.77, Planck constant h=6.262620×10−34 Js, and thermal linear expansion coefficient γ=1.42×10−5 K−1
  11. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2005).
  12. A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, Appl. Opt. 36, 6539 (1997). [CrossRef]
  13. Z. Salamon, H. A. Macleod, and G. Tollin, Biochim. Biophys. Acta 1331, 117 (1997). [PubMed]
  14. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, Anal. Chem. 71, 3928 (1999). [CrossRef]
  15. P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, Sens. Actuators B 54, 43 (1999). [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  17. B. A. Snopok, K. V. Kostyukevich, S. I. Lysenko, P. M. Lytvyn, O. S. Lytvyn, S. V. Mamykin, S. A. Zynyo, P. E. Shepeliavyi, S. A. Kostyukevich, Yu. M. Shirshov, and E. F. Venger, Semicond. Phys., Quantum Electron. Optoelectron. 4, 56 (2001).
  18. K. A. Peterlinz and R. Georgiandis, Langmuir 12, 4731 (1996). [CrossRef]
  19. The optimum SPR angle is given as θspr=sin−1[1/np(epsimepsis/epsim+epsis)1/2] from the Kretschmann theory .
  20. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Rev. Sci. Instrum. 65, 2829 (1994). [CrossRef]
  21. S. J. Kline and F. A. McClintock, Mech. Eng. (Am. Soc. Mech. Eng.) 75, 3 (1953).
  22. Estimated elementary uncertainties: ωdm=47.5 nm×+/-1.25%(=+/-0.59375 nm), ωepsim=+/-0.002115++/-i0.081(epsim=−13.2+i1.25), ωθ=+/-1.0/60°=+/-0.0167°, ωλ=+/-1.5 nm, ωT=+/-0.1°C where dm is the thickness of the Au layer (47.5 nm), θ is the incident SPR angle optimized for water temperature of 80°C (69.47°), and λ is the incident wavelength (632.8 nm).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited