OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 13 — Jul. 1, 2008
  • pp: 1491–1493

Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method

Ilya Valuev, Alexei Deinega, and Sergei Belousov  »View Author Affiliations

Optics Letters, Vol. 33, Issue 13, pp. 1491-1493 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Normal incidence of a plane electromagnetic wave on a periodical structure can be simulated by the finite-difference time-domain method using a single unit cell with periodical boundary conditions imposed on its borders. For the oblique wave incidence, the boundary conditions would contain time delays and thus are difficult to implement in the time-domain method. We propose a method of oblique incidence simulation, based on an iterative algorithm. The accuracy of this method is demonstrated by comparing it with the layer Korringa–Kohn–Rostoker frequency-domain method for calculation of transmission spectra of a monolayered photonic crystal.

© 2008 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(290.0290) Scattering : Scattering

ToC Category:
Other Areas of Optics

Original Manuscript: March 20, 2008
Revised Manuscript: May 5, 2008
Manuscript Accepted: May 21, 2008
Published: June 26, 2008

Ilya Valuev, Alexei Deinega, and Sergei Belousov, "Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method," Opt. Lett. 33, 1491-1493 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Taflove and S. H. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2000).
  2. M. Veysoglu, R. Shin, and J. Kong, J. Electromagn. Waves Appl. 7, 1595 (1993). [CrossRef]
  3. Y. C. A. Kao and R. G. Atkins, in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 1996), pp. 1432-1436.
  4. J. A. Roden, S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, IEEE Trans. Microwave Theory Tech. 46, 420 (1998). [CrossRef]
  5. P. Harms, R. Mittra, and W. Ko, IEEE Trans. Antennas Propag. 42, 1317 (1994). [CrossRef]
  6. A. Aminian and Y. Rahmat-Samii, IEEE Trans. Antennas Propag. 54, 1818 (2006). [CrossRef]
  7. J. Ren, O. P. Gandhi, L. R. Walker, J. Fraschilla, and C. R. Boerman, IEEE Microw. Guid. Wave Lett. 4, 109 (1994). [CrossRef]
  8. I. Valuev, A. Deinega, A. Knizhnik, and B. Potapkin, Lect. Notes Comput. Sci. 4707, 213 (2007). [CrossRef]
  9. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, Opt. Lett. 31, 2972 (2006). [CrossRef] [PubMed]
  10. A. Deinega and I. Valuev, Opt. Lett. 32, 3429 (2007). [CrossRef] [PubMed]
  11. N. Stefanou, N. Yannopapas, and D. Modinos, Comput. Phys. Commun. 113, 49 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited