Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Lineshape asymmetry for joint coherent population trapping and three-photon N resonances

Not Accessible

Your library or personal account may give you access

Abstract

We show that a characteristic two-photon lineshape asymmetry arises in coherent population trapping (CPT) and three-photon (N) resonances, because both resonances are simultaneously induced by modulation sidebands in the interrogating laser light. The N resonance is a three-photon resonance in which a two-photon Raman excitation is combined with a resonant optical pumping field. This joint CPT and N resonance can be the dominant source of lineshape distortion, with direct relevance for the operation of miniaturized atomic frequency standards. We present the results of both an experimental study and theoretical treatment of the asymmetry of the joint CPT and N resonance under conditions typical to the operation of an N resonance clock.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
N+CPT clock resonance

M. Crescimanno and M. Hohensee
J. Opt. Soc. Am. B 25(12) 2130-2139 (2008)

Effect of atomic diffusion on the Raman–Ramsey coherent population trapping resonances

Elena Kuchina, Eugeniy E. Mikhailov, and Irina Novikova
J. Opt. Soc. Am. B 33(4) 610-614 (2016)

Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock

David F. Phillips, Irina Novikova, Christine Y.-T. Wang, Ronald L. Walsworth, and Michael Crescimanno
J. Opt. Soc. Am. B 22(2) 305-310 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved