OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 33, Iss. 23 — Dec. 1, 2008
  • pp: 2806–2808

Open waveguide cavity using a negative index medium

Wei Yan and Linfang Shen  »View Author Affiliations


Optics Letters, Vol. 33, Issue 23, pp. 2806-2808 (2008)
http://dx.doi.org/10.1364/OL.33.002806


View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An open waveguide cavity formed by a pair of planar waveguides, in which one guiding layer is a negative index medium and the other is a positive index medium, is theoretically demonstrated. For such a waveguide cavity the resonant frequency is independent of the total length of the waveguide system. With the coupled mode theory it is shown that energy flow circulation can be established through the special coupling between the waveguides at the resonant frequency, and thus the wave fields are localized. This phenomenon is further verified numerically with the finite-difference time-domain method. The quality factor of the open waveguide cavity is also discussed.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(260.5740) Physical optics : Resonance

ToC Category:
Physical Optics

History
Original Manuscript: June 12, 2008
Revised Manuscript: October 16, 2008
Manuscript Accepted: October 20, 2008
Published: November 24, 2008

Citation
Wei Yan and Linfang Shen, "Open waveguide cavity using a negative index medium," Opt. Lett. 33, 2806-2808 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-23-2806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Veselago, Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001). [CrossRef] [PubMed]
  4. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. E 67, 057602 (2003). [CrossRef]
  5. B.-l. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, J. Appl. Phys. 93, 9386 (2003). [CrossRef]
  6. Y. Yuan, L. Ran, H. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, Appl. Phys. Lett. 88, 211903 (2006). [CrossRef]
  7. W. Yan, L. F. Shen, Y. Yuan, and T. J. Yang, http://www.arXiv:0808.3528 [physics. optics] (2008).
  8. S. D. Gedney, Electromagnetics 16, 399 (1996). [CrossRef]
  9. H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, J. Lightwave Technol. 5, 161987. [CrossRef]
  10. A. W. Snyder, A. Ankiewicz, and A. Altintas, Electron. Lett. 23, 1097 (1987). [CrossRef]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics--The Finite Difference Time-Domain Method (Artech House, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited