OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 24 — Dec. 15, 2008
  • pp: 2931–2933

Characterization of high-Q optical microcavities using confocal microscopy

Rajan P. Kulkarni, Scott E. Fraser, and Andrea M. Armani  »View Author Affiliations

Optics Letters, Vol. 33, Issue 24, pp. 2931-2933 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (489 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Confocal microscopy was initially developed to image complex circuits and material defects. Previous imaging studies yielded only qualitative data about the location and number of defects. In the present study, this noninvasive method is used to obtain quantitative information about the Q factor of an optical resonant cavity. Because the intensity of the fluorescent signal measures the number of defects in the resonant cavity, this signal is a measure of the number of surface scattering defects, one of the dominant loss mechanisms in optical microcavities. The Q of the cavities was also determined using conventional linewidth measurements. Based upon a quantitative comparative analysis of these two techniques, it is shown that the Q can be determined without a linewidth measurement, allowing for a noninvasive characterization technique.

© 2008 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(180.1790) Microscopy : Confocal microscopy
(230.5750) Optical devices : Resonators

ToC Category:

Original Manuscript: June 2, 2008
Revised Manuscript: October 24, 2008
Manuscript Accepted: October 25, 2008
Published: December 4, 2008

Rajan P. Kulkarni, Scott E. Fraser, and Andrea M. Armani, "Characterization of high-Q optical microcavities using confocal microscopy," Opt. Lett. 33, 2931-2933 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. In confocal microscopy, images are generated through the use of pinholes, which selectively capture light from the in-focus section of the illuminated image. The fluorescent light returning to the objective includes both fluorescence from the optical section in focus as well as other depths of the sample. The pinhole size can be expanded to allow more light in or it can be narrowed to restrict light. By reducing the size of the pinhole, light from shallower or deeper sections (relative to the optical section in question) can be rejected, thus allowing for imaging of a very thin depth of the sample.
  2. T. Wilson, J. N. Gannaway, and P. Johnson, J. Microsc. 118, 309 (1980). [CrossRef]
  3. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Nature 366, 44 (1993). [CrossRef] [PubMed]
  4. D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004). [CrossRef] [PubMed]
  5. A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007). [CrossRef]
  6. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003). [CrossRef] [PubMed]
  7. M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000). [CrossRef] [PubMed]
  8. K. Srinivasan and O. Painter, Opt. Express 10, 670 (2002). [PubMed]
  9. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, Opt. Express 15, 17206 (2007). [CrossRef] [PubMed]
  10. A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007). [CrossRef] [PubMed]
  11. C. Y. Chao and L. J. Guo, J. Vac. Sci. Technol. B 20, 2862 (2002). [CrossRef]
  12. M. Soltani, S. Yegnanarayanan, and A. Adibi, Opt. Express 15, 4694 (2007). [CrossRef] [PubMed]
  13. K. Srinivasan, M. Borselli, and O. Painter, Opt. Express 14, 1094 (2006). [CrossRef] [PubMed]
  14. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996). [CrossRef] [PubMed]
  15. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 6113 (2004). [CrossRef]
  16. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008). [CrossRef] [PubMed]
  17. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, J. Lightwave Technol. 20, 1968 (2002). [CrossRef]
  18. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007). [CrossRef] [PubMed]
  19. T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited