OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 24 — Dec. 15, 2008
  • pp: 2940–2942

Geometrical approach in physical understanding of the Goos–Haenchen shift in one- and two-dimensional periodic structures

Mehdi Miri, Ali Naqavi, Amin Khavasi, Khashayar Mehrany, Sina Khorasani, and Bizhan Rashidian  »View Author Affiliations

Optics Letters, Vol. 33, Issue 24, pp. 2940-2942 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Goos–Haenchen shift of a totally reflected beam at the planar interface of two dielectric media, as if the incident beam is reflected from beneath the interface between the incident and transmitted media, has been geometrically associated with the penetration of the incident photons in the less-dense forbidden transmission region. This geometrical approach is here generalized to analytically calculate the Goos–Haenchen shift in one- and two-dimensional periodic structures. Several numerical examples are presented, and the obtained results are successfully tested against the well-known Artman’s formula. The proposed approach is shown to be a fast, simple, and efficient method that can provide good physical insight to the nature of the phenomenon.

© 2008 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics
(260.6970) Physical optics : Total internal reflection

ToC Category:
Physical Optics

Original Manuscript: August 11, 2008
Revised Manuscript: October 15, 2008
Manuscript Accepted: October 31, 2008
Published: December 4, 2008

Mehdi Miri, Ali Naqavi, Amin Khavasi, Khashayar Mehrany, Sina Khorasani, and Bizhan Rashidian, "Geometrical approach in physical understanding of the Goos-Haenchen shift in one- and two-dimensional periodic structures," Opt. Lett. 33, 2940-2942 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Goos and H. Hänchen, Ann. Phys. (Paris) 1, 333 (1947).
  2. K. Artmann, Ann. Phys. (Paris) 2, 87 (1948).
  3. R. H. Renard, J. Opt. Soc. Am. 54, 1190 (1964). [CrossRef]
  4. S. R. Seshadri, J. Opt. Soc. Am. A 5, 583 (1988). [CrossRef]
  5. J. P. Hugonin and R. Petit, J. Opt. (Paris) 8, 73 (1977).
  6. J. J. Cowan and B. Anicin, J. Opt. Soc. Am. 67, 1307 (1977). [CrossRef]
  7. E. Pfleghaar, A. Marseille, and A. Weis, Phys. Rev. Lett. 70, 2281 (1993). [CrossRef] [PubMed]
  8. B. M. Jost, A.-A. R. Al-Rashed, and B. E. A. Saleh, Phys. Rev. Lett. 81, 2233 (1998). [CrossRef]
  9. X. Hu, Y. Huang, W. Zhang, D. K. Qing, and J. Peng, Opt. Lett. 30, 899 (2005). [CrossRef] [PubMed]
  10. A. Lakhtakia, Electromagnetics 23, 71 (2003). [CrossRef]
  11. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, Appl. Phys. Lett. 83, 2713 (2003). [CrossRef]
  12. H. M. Lai and S. W. Chan, Opt. Lett. 27, 680 (2002). [CrossRef]
  13. P. T. Leung, C. W. Chen, and H. P. Chiang, Opt. Commun. 276, 206 (2007). [CrossRef]
  14. O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, Phys. Rev. Lett. 75, 1511 (1995). [CrossRef] [PubMed]
  15. D. Felbacq, A. Moreau, and R. Smaâli, Opt. Lett. 28, 1633 (2003). [CrossRef] [PubMed]
  16. D. Felbacq and R. Smaâli, Phys. Rev. Lett. 92, 193902 (2004). [CrossRef] [PubMed]
  17. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999).
  18. A. Rung and C. G. Ribbing, Phys. Rev. Lett. 92, 123901 (2004). [CrossRef] [PubMed]
  19. A. Khavasi, A. K. Jahromi, and K. Mehrany, J. Opt. Soc. Am. A 25, 1564 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited