OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 7 — Apr. 1, 2008
  • pp: 672–674

Hollow-core waveguide characterization by optically induced particle transport

Philip Measor, Sergei Kühn, Evan J. Lunt, Brian S. Phillips, Aaron R. Hawkins, and Holger Schmidt  »View Author Affiliations

Optics Letters, Vol. 33, Issue 7, pp. 672-674 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a method for optical characterization of hollow-core optical waveguides. Radiation pressure exerted by the waveguide modes on dielectric microspheres is used to analyze salient properties such as propagation loss and waveguide mode profiles. These quantities were measured for quasi-single-mode and multimode propagation in on-chip liquid-filled hollow-core antiresonant reflecting optical waveguides. Excellent agreement with analytical and numerical models is found, demonstrating that optically induced particle transport provides a simple, inexpensive, and nondestructive alternative to other characterization methods.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Other Areas of Optics

Original Manuscript: January 3, 2008
Revised Manuscript: February 14, 2008
Manuscript Accepted: February 15, 2008
Published: March 26, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Philip Measor, Sergei Kühn, Evan J. Lunt, Brian S. Phillips, Aaron R. Hawkins, and Holger Schmidt, "Hollow-core waveguide characterization by optically induced particle transport," Opt. Lett. 33, 672-674 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Verdaasdonk and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997). [CrossRef] [PubMed]
  2. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007). [CrossRef]
  3. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002). [CrossRef] [PubMed]
  4. R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, IEEE Sens. J. 3, 652 (2003). [CrossRef]
  5. H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008). [CrossRef] [PubMed]
  6. R. G. Hunsperger, Integrated Optics--Theory and Technology, 5th ed. (Springer, 2002).
  7. M. K. Barnoski and S. M. Jensen, Appl. Opt. 15, 2112 (1976). [CrossRef] [PubMed]
  8. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, J. Lightwave Technol. 22, 11 (2004). [CrossRef]
  9. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970). [CrossRef]
  10. K. C. Neuman and S. Block, Rev. Sci. Instrum. 75, 2787 (2004). [CrossRef]
  11. M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999). [CrossRef]
  12. S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007). [CrossRef]
  13. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media (Prentice-Hall, 1965).
  14. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, Appl. Phys. A 66, S75 (1998). [CrossRef]
  15. A. R. Hawkins and H. Schmidt, Microfluid. Nanofluid. 4, 17 (2008). [CrossRef]
  16. C14H22O(C2H4O)n nonionic surfactant (trace amounts used).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited