OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 12 — Jun. 15, 2009
  • pp: 1780–1782

Radially polarized conical beam from an embedded etched fiber

Djamel Kalaidji, Michel Spajer, Nadège Marthouret, and Thierry Grosjean  »View Author Affiliations

Optics Letters, Vol. 34, Issue 12, pp. 1780-1782 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a method for producing a conical beam based on the lateral refraction of the TM 01 mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid component usable for many applications has been obtained.

© 2009 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(180.4243) Microscopy : Near-field microscopy
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 6, 2009
Manuscript Accepted: April 18, 2009
Published: June 3, 2009

Djamel Kalaidji, Michel Spajer, Nadège Marthouret, and Thierry Grosjean, "Radially polarized conical beam from an embedded etched fiber," Opt. Lett. 34, 1780-1782 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, Adv. Opt. Photonics 1, 1 (2009). [CrossRef]
  2. C. J. R. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2004). [CrossRef] [PubMed]
  3. T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003). [CrossRef] [PubMed]
  4. M. Erdelyi and G. Gajdatsy, J. Opt. A 10, 055007 (2008). [CrossRef]
  5. J. Li, K. Ueda, M. Musha, A. Shirakawa, and L. Zhong, Opt. Lett. 31, 2969 (2006). [CrossRef] [PubMed]
  6. S. Ramachandran, S. Golowitch, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, Opt. Lett. 30, 2864 (2005). [CrossRef] [PubMed]
  7. P. Facq, F. de Fornel, and F. Jean, Electron. Lett. 20, 613 (1984). [CrossRef]
  8. T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005). [CrossRef]
  9. S. Shalklan, Appl. Opt. 30, 4379 (1991). [CrossRef]
  10. D. McGloin, N. B. Simpson, and M. J. Padgett, Appl. Opt. 37, 469 (1998). [CrossRef]
  11. C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, J. Opt. A 10, 055009 (2008). [CrossRef]
  12. S. Kawakami and S. Nishida, IEEE J. Quantum Electron. QE-11, 130 (1975). [CrossRef]
  13. H. C. Lefevre, Electron. Lett. 16, 778 (1980). [CrossRef]
  14. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), Table 14-6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited