OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 14 — Jul. 15, 2009
  • pp: 2168–2170

Compact, Ti:sapphire-based, methane-stabilized optical molecular frequency comb and clock

Andrew Benedick, Dmitry Tyurikov, Mikhail Gubin, Ruth Shewmon, Issac Chuang, and Franz X. Kärtner  »View Author Affiliations

Optics Letters, Vol. 34, Issue 14, pp. 2168-2170 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (310 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact optical clock and frequency comb system is presented, based on a 1 GHz octave-spanning Ti:sapphire laser referenced to the F 2 ( 2 ) ( P ( 7 ) , v 3 ) optical transition in methane at 3.39 μ m . The reference methane transition is accessed by a stabilized HeNe laser in a compact transportable format. The output from the octave-spanning Ti:sapphire laser is used to generate a mid-IR comb at the reference wavelength 3.39 μ m . Direct comparison of the stabilized optical frequency comb with an ultralow expansion glass cavity-stabilized diode laser at 674 nm shows an Allan deviation of the frequency comb of 3 × 10 14 in 20 s .

© 2009 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Ultrafast Optics

Original Manuscript: March 13, 2009
Revised Manuscript: May 13, 2009
Manuscript Accepted: June 5, 2009
Published: July 10, 2009

Andrew Benedick, Dmitry Tyurikov, Mikhail Gubin, Ruth Shewmon, Issac Chuang, and Franz X. Kärtner, "Compact, Ti:sapphire-based, methane-stabilized optical molecular frequency comb and clock," Opt. Lett. 34, 2168-2170 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Phys. Rev. Lett. 85, 2264 (2000). [CrossRef] [PubMed]
  2. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006). [CrossRef] [PubMed]
  3. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Science 319, 1808 (2008). [CrossRef] [PubMed]
  4. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008). [CrossRef] [PubMed]
  5. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, Eur. Phys. J. D 48, 57 (2008). [CrossRef]
  6. S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003). [CrossRef]
  7. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, Rev. Sci. Instrum. 78, 021101 (2007). [CrossRef] [PubMed]
  8. M. A. Gubin, D. A. Tyurikov, A. S. Shelkovnikov, E. V. Kovalchuk, G. Kramer, and B. Lipphardt, IEEE J. Quantum Electron. 31, 2177 (1995). [CrossRef]
  9. T. M. Fortier, A. Bartels, and S. A. Diddams, Opt. Lett. 31, 1011 (2006). [CrossRef] [PubMed]
  10. S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mucke, F. N. C. Wong, E. P. Ippen, and F. X. Kartner, Opt. Lett. 30, 570 (2005). [CrossRef] [PubMed]
  11. F. X. Kartner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, J. Opt. Soc. Am. B 18, 882 (2001). [CrossRef]
  12. M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, and T. W. Hansch, Opt. Lett. 29, 310 (2004). [CrossRef] [PubMed]
  13. R. Shewmon, Coherent Manipulations of Trapped 88Sr+ Using the 4D5/2-->5S1/2 Transition (Massachusetts Institute of Technology, 2008). [PubMed]
  14. J. Kim, J. Chen, J. Cox, and F. X. Kärtner, Opt. Lett. 32, 3519 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited