OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 14 — Jul. 15, 2009
  • pp: 2210–2212

Blind multispectral image decomposition by 3D nonnegative tensor factorization

Ivica Kopriva and Andrzej Cichocki  »View Author Affiliations

Optics Letters, Vol. 34, Issue 14, pp. 2210-2212 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



α-divergence-based nonnegative tensor factorization (NTF) is applied to blind multispectral image (MSI) decomposition. The matrix of spectral profiles and the matrix of spatial distributions of the materials resident in the image are identified from the factors in Tucker3 and PARAFAC models. NTF preserves local structure in the MSI that is lost as a result of vectorization of the image when nonnegative matrix factorization (NMF)- or independent component analysis (ICA)-based decompositions are used. Moreover, NTF based on the PARAFAC model is unique up to permutation and scale under mild conditions. To achieve this, NMF- and ICA-based factorizations, respectively, require enforcement of sparseness (orthogonality) and statistical independence constraints on the spatial distributions of the materials resident in the MSI, and these conditions do not hold. We demonstrate efficiency of the NTF-based factorization in relation to NMF- and ICA-based factorizations on blind decomposition of the experimental MSI with the known ground truth.

© 2009 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(100.3190) Image processing : Inverse problems
(100.6890) Image processing : Three-dimensional image processing
(150.6910) Machine vision : Three-dimensional sensing
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Image Processing

Original Manuscript: March 26, 2009
Revised Manuscript: June 19, 2009
Manuscript Accepted: June 21, 2009
Published: July 14, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Ivica Kopriva and Andrzej Cichocki, "Blind multispectral image decomposition by 3D nonnegative tensor factorization," Opt. Lett. 34, 2210-2212 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C.-I. Chang, S.-S. Chiang, J. A. Smith, and I. W. Ginsberg, IEEE Trans. Geosci. Remote Sens. 40, 375 (2002). [CrossRef]
  2. T. Tu, Opt. Eng. (Bellingham) 39, 897 (2000). [CrossRef]
  3. H. A. L. Kiers, J. Chemom. 14, 105 (2000). [CrossRef]
  4. A. Cichocki, R. Zdunek, and S. Amari, IEEE Signal Process. Mag. 25, 142 (2008). [CrossRef]
  5. A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing (Wiley, 2002). [CrossRef]
  6. J. F. Cardoso and A. Soulomniac, Proc. IEE F 140, 362 (1993).
  7. J. M. P. Nascimento and J. M. Dias Bioucas, IEEE Trans. Geosci. Remote Sens. 43, 175 (2005). [CrossRef]
  8. N. Renard, S. Bourennane, and J. Blanc-Talon, IEEE Geosci. Remote Sens. Lett. 5, 138 (2008). [CrossRef]
  9. N. Renard and S. Bourennane, IEEE Trans. Geosci. Remote Sens. 46, 2407 (2008). [CrossRef]
  10. Q. Zhang, H. Wang, R. J. Plemons, and V. P. Pauca, J. Opt. Soc. Am. A 25, 3001 (2008). [CrossRef]
  11. L. R. Tucker, Psychometrika 31, 279 (1966). [CrossRef] [PubMed]
  12. J. D. Carrol and J. J. Chang, Psychometrika 35, 283 (1970). [CrossRef]
  13. R. A. Harshman, UCLA Working Papers in Phonetics 16, 1 (1970).
  14. E. Acar and B. Yener, IEEE Trans. Knowl. Data Eng. 21, 6 (2009). [CrossRef]
  15. J. B. Kruskal, Linear Algebr. Appl. 18, 95 (1977). [CrossRef]
  16. N. D. Sidiropoulos and R. Bro, J. Chemom. 14, 229 (2000). [CrossRef]
  17. Y. D. Kim, A. Cichocki, and S. Choi, presented at the 2008 IEEE ICASSP International Conference on Acoustics, Speech and Signal Processing, Las Vegas, Nevada, March 30-April 4, 2008, pp. 1829-1832.
  18. A. H. Phan and A. Cichocki, Lect. Notes Comput. Sci. 5264, 772 (2008). [CrossRef]
  19. C. A. Anderson and R. Bro, Chemom. Intell. Lab. Syst. 52, 1 (2000). [CrossRef]
  20. R. Zdunek and A. Cichocki, Signal Process. 87, 1904 (2007). [CrossRef]
  21. A. Hyvärinen, in Proceedings of the International Conference on Artificial Neural Networks (ICANN'98) (IEEE, 1998), pp. 541-546.
  22. B. W. Bader and T. G. Kolda, MATLAB Tensor Toolbox version 2.2., http://csmr.ca.sandia.gov/~tkolda/TensorToolbox.
  23. Ch. Li, Ch. Xu, Ch. Gui, and M. D. Fox, in IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 430-436.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited