OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 16 — Aug. 15, 2009
  • pp: 2414–2416

Nanoindentation study on germania-doped silica glass preforms: evidence for the compaction–densification model of photosensitivity

R. Aashia, K. V. Madhav, U. Ramamurty, and S. Asokan  »View Author Affiliations


Optics Letters, Vol. 34, Issue 16, pp. 2414-2416 (2009)
http://dx.doi.org/10.1364/OL.34.002414


View Full Text Article

Enhanced HTML    Acrobat PDF (211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanoindentation technique was employed to measure the changes in mechanical properties of a glass preform subjected to different levels of UV exposure. The results reveal that short-term exposure leads to an appreciable increase in the Young’s modulus (E), suggesting the densification of the glass, confirming the compaction–densification model. However, on prolonged exposure, E decreases, which provides what we believe to be the first direct evidence of dilation in the glass leading into the Type IIA regime. The present results rule out the hypothesis that continued exposure leads to an irreversible compaction and prove that index modulation regimes are intrinsic to the glass matrix.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity
(160.5335) Materials : Photosensitive materials

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 24, 2009
Manuscript Accepted: July 9, 2009
Published: August 5, 2009

Citation
R. Aashia, K. V. Madhav, U. Ramamurty, and S. Asokan, "Nanoindentation study on germania-doped silica glass preforms: evidence for the compaction-densification model of photosensitivity," Opt. Lett. 34, 2414-2416 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-16-2414

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited