OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 16 — Aug. 15, 2009
  • pp: 2453–2455

Split-field FDTD method for oblique incidence study of periodic dispersive metallic structures

F. I. Baida and A. Belkhir  »View Author Affiliations

Optics Letters, Vol. 34, Issue 16, pp. 2453-2455 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The study of periodic structures illuminated by a normally incident plane wave is a simple task that can be numerically simulated by the finite-difference time-domain (FDTD) method. On the contrary, for off-normal incidence, a widely modified algorithm must be developed in order to bypass the frequency dependence appearing in the periodic boundary conditions. After recently implementing this FDTD algorithm for pure dielectric materials, we here extend it to the study of metallic structures where dispersion can be described by analytical models. The accuracy of our code is demonstrated through comparisons with already-published results in the case of 1D and 3D structures.

© 2009 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Fiber Optics

Original Manuscript: March 4, 2009
Revised Manuscript: May 22, 2009
Manuscript Accepted: June 22, 2009
Published: August 10, 2009

F. I. Baida and A. Belkhir, "Split-field FDTD method for oblique incidence study of periodic dispersive metallic structures," Opt. Lett. 34, 2453-2455 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2005).
  2. J. A. Roden, S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, IEEE Trans. Microwave Theory Tech. 46, 420 (1998). [CrossRef]
  3. A. Belkhir and F. I. Baida, Phys. Rev. E 77, 056701 (2008). [CrossRef]
  4. I. Valuev, A. Deinega, and S. Belousov, Opt. Lett. 33, 1491 (2008). [CrossRef] [PubMed]
  5. R. M. Joseph, S. C. Hagness, and A. Taflove, Opt. Lett. 16, 1412 (1991). [CrossRef] [PubMed]
  6. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, Phys. Rev. B 71, 085416 (2005). [CrossRef]
  7. T. O. Körner and W. Fichtner, Opt. Lett. 22, 1586 (1997). [CrossRef]
  8. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, Opt. Lett. 31, 2972 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited