OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 18 — Sep. 15, 2009
  • pp: 2835–2837

3D tensor factorization approach to single-frame model-free blind-image deconvolution

Ivica Kopriva  »View Author Affiliations


Optics Letters, Vol. 34, Issue 18, pp. 2835-2837 (2009)
http://dx.doi.org/10.1364/OL.34.002835


View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By applying a bank of 2D Gabor filters to a blurred image, single-frame blind-image deconvolution (SF BID) is formulated as a 3D tensor factorization (TF) problem, with the key contribution that neither origin nor size of the spatially invariant blurring kernel is required to be known or estimated. Mixing matrix, the original image, and its spatial derivatives are identified from the factors in the Tucker3 model of the multi channel version of the blurred image. Previous approaches to 2D Gabor-filter-bank-based SF BID relied on 2D representation of the multichannel version of the blurred image and matrix factorization methods such as nonnegative matrix factorization (NMF) and independent component analysis (ICA). Unlike matrix factorization-based methods 3D TF preserves local structure in the image. Moreover, 3D TF based on the PARAFAC model is unique up to permutation and scales under very mild conditions. To achieve this, NMF and ICA respectively require enforcement of sparseness and statistical independence constraints on the original image and its spatial derivatives. These constraints are generally not satisfied. The 3D TF-based SF BID method is demonstrated on an experimental defocused red–green–blue image.

© 2009 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.6640) Image processing : Superresolution
(100.6890) Image processing : Three-dimensional image processing

ToC Category:
Image Processing

History
Original Manuscript: March 31, 2009
Revised Manuscript: June 4, 2009
Manuscript Accepted: June 4, 2009
Published: September 14, 2009

Citation
Ivica Kopriva, "3D tensor factorization approach to single-frame model-free blind-image deconvolution," Opt. Lett. 34, 2835-2837 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-18-2835


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Banham and A. K. Katsaggelos, IEEE Signal Process. Mag. 14, 24 (1997). [CrossRef]
  2. D. Kundur and D. Hatzinakos, IEEE Signal Process. Mag. 13, 43 (1996). [CrossRef]
  3. P.Campisi and K.Egiazarian, eds., Blind Image Deconvolution (CRC Press, 2007). [CrossRef]
  4. I. Kopriva, Opt. Lett. 30, 3135 (2005). [CrossRef] [PubMed]
  5. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis (Wiley Interscience, 2001). [CrossRef]
  6. I. Kopriva, J. Opt. Soc. Am. A 24, 973 (2007). [CrossRef]
  7. C. Yi-nan, J. Wei-qi, W. Ling-Xue, Z. Lei, and Y. Hong-sheng, Opt. Commun. 282, 786 (2009). [CrossRef]
  8. S. Umeyama, Scripta Technica, Electron. Comm. Jpn. Part 3 84, 1 (2001). [CrossRef]
  9. H. A. L. Kiers, J. Chemom. 14, 105 (2000). [CrossRef]
  10. L. R. Tucker, Psychometrika 31, 279 (1966). [CrossRef] [PubMed]
  11. J. D. Carrol and J. J. Chang, Psychometrika 35, 283 (1970). [CrossRef]
  12. R. A. Harshman, in UCLA Working Papers in Phonetics (UCLA, 1970), Vol. 16, p. 1.
  13. E. Acar and B. Yener, IEEE Trans. Knowl. Data Eng. 21, 6 (2009). [CrossRef]
  14. J. B. Kruskal, Linear Algebr. Appl. 18, 95 (1977). [CrossRef]
  15. N. D. Sidiropoulos and R. Bro, J. Chemom. 14, 229 (2000). [CrossRef]
  16. N. Renard, S. Bourennane, and J. Blanc-Talon, IEEE Trans. Geosci. Remote Sens. Lett. 5, 138 (2008). [CrossRef]
  17. N. Renard and S. Bourennane, IEEE Tras. Geosci. Remote Sens. 46, 2407 (2008). [CrossRef]
  18. B. W. Bader and T. G. Kolda, MATLAB Tensor Toolbox Version 2.2, http://csmr.ca.sandia.gov/~tkolda/TensorToolbox.
  19. L. De Lathauwer, B. De Moor, and J. Vandewalle, SIAM J. Matrix Anal. Appl. 21, 1253 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited