OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 19 — Oct. 1, 2009
  • pp: 3012–3014

Wavelength-tunable microbolometers with metamaterial absorbers

Thomas Maier and Hubert Brückl  »View Author Affiliations

Optics Letters, Vol. 34, Issue 19, pp. 3012-3014 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microbolometers are modified by metallic resonant absorber elements, leading to an enhanced responsivity at selectable wavelengths. The dissipative energy absorption of tailored metamaterials allows for engineering the response of conventional bolometer microbridges. The absorption peak position and height are determined by the geometry of the metamaterial. Square-shaped metal/dielectric/metal stacks as absorber elements show spectral resonances at wavelengths between 4.8 and 7.0 μm in accordance with numerical simulations. Total peak absorptions of 0.8 are obtained. The metamaterial modified bolometers are suitable for multispectral thermal imaging systems in the mid-IR and terahertz regime.

© 2009 Optical Society of America

OCIS Codes
(040.2235) Detectors : Far infrared or terahertz
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:

Original Manuscript: June 30, 2009
Revised Manuscript: August 27, 2009
Manuscript Accepted: September 6, 2009
Published: September 30, 2009

Thomas Maier and Hubert Brückl, "Wavelength-tunable microbolometers with metamaterial absorbers," Opt. Lett. 34, 3012-3014 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Such a system is currently marketed by Cedip Infrared Systems (FLIR), http://www.cedip-infrared.com.
  2. A. J. Syllaios and P. Chahal, international patent application WO2004/094969 A1 (April 6, 2004).
  3. F. J. Gonzáles, J. L. Porter, and G. D. Boreman, Microwave Opt. Technol. Lett. 48, 165 (2006). [CrossRef]
  4. A. S. Weling, P. F. Henning, D. P. Neikirk, and S. Han, Proc. SPIE 6206, 62061F (2006). [CrossRef]
  5. V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, and G. Klimeck, Laser Phys. Lett. 3, 49 (2006). [CrossRef]
  6. B. E. Cole, R. E. Higashi, and R. A. Wood, Proc. IEEE 86, 1679 (1998). [CrossRef]
  7. C. Posch, D. Matolin, R. Wohlgenannt, T. Maier, and M. Litzenberger, IEEE Sens. J. 9, 654 (2009). [CrossRef]
  8. S. W. Hsieh, C. Y. Chang, Y. S. Lee, C. W. Lin, and S. C. Hsu, J. Appl. Phys. 76, 3645 (1994). [CrossRef]
  9. M. Klanjsek Gunde and M. Macek, Phys. Status Solidi A 183, 439 (2001). [CrossRef]
  10. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Appl. Opt. 22, 1099 (1983). [CrossRef] [PubMed]
  11. D. Y. Smith, E. Shiles, and M. Inokuti, in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1998), pp. 369-406.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited