OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 23 — Dec. 1, 2009
  • pp: 3728–3730

Switching a plasmalike metamaterial via embedded resonant atoms exhibiting electromagnetically induced transparency

Sangeeta Chakrabarti, S. Anantha Ramakrishna, and Harshawardhan Wanare  »View Author Affiliations


Optics Letters, Vol. 34, Issue 23, pp. 3728-3730 (2009)
http://dx.doi.org/10.1364/OL.34.003728


View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically demonstrate control of the plasmalike effective response of a metamaterial composed of aligned metallic nanorods when the electric field of the incident radiation is parallel to the nanorods. By embedding this metamaterial in a coherent atomic/molecular medium, for example, silver nanorod arrays submerged in sodium vapor, we can make the metamaterial transmittive in the forbidden frequency region below its plasma frequency. This phenomenon is enabled by having Lorentz absorbers or other coherent processes in the background medium, which provide a large positive dielectric permittivity in the vicinity of the resonance, thereby rendering the effective permittivity positive. In particular, processes such as electromagnetically induced transparency are shown to provide additional control to switch and tune the new transmission bands.

© 2009 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: August 26, 2009
Revised Manuscript: October 12, 2009
Manuscript Accepted: October 16, 2009
Published: November 30, 2009

Citation
Sangeeta Chakrabarti, S. Anantha Ramakrishna, and Harshawardhan Wanare, "Switching a plasmalike metamaterial via embedded resonant atoms exhibiting electromagnetically induced transparency," Opt. Lett. 34, 3728-3730 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-23-3728


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2009).
  2. D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]
  3. J. B. Pendry, D. R. Smith, and D. Schurig, Science 312, 1780 (2006). [CrossRef] [PubMed]
  4. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  5. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, Opt. Express 16, 19504 (2008). [CrossRef] [PubMed]
  6. S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004). [CrossRef]
  7. W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  8. J. Han, A. Lakhtakia, and C.-W. Qiu, Opt. Express 16, 14390 (2008). [CrossRef] [PubMed]
  9. D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, Opt. Express 15, 3342 (2007). [CrossRef] [PubMed]
  10. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006). [CrossRef]
  11. K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991). [CrossRef] [PubMed]
  12. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 397, 594 (1999). [CrossRef]
  13. L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000). [CrossRef] [PubMed]
  14. M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991). [CrossRef] [PubMed]
  15. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996). [CrossRef] [PubMed]
  16. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002). [CrossRef]
  17. Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, J. Phys. D 41, 152007 (2008). [CrossRef]
  18. A. I. Rahachou and I. V. Zozoulenko, J. Opt. A 9, 265 (2007). [CrossRef]
  19. A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmstrom, L. Thylen, Y. Fu, and H. Agren, Appl. Phys. Lett. 93, 193106 (2008). [CrossRef]
  20. T. G. Mackay and A. Lakhtakia, Opt. Commun. 282, 2470 (2009). [CrossRef]
  21. G. S. Agarwal and Robert W. Boyd, Phys. Rev. A 60, R2681 (1999). [CrossRef]
  22. S. E. Harris, Phys. Rev. Lett. 77, 5357 (1996). [CrossRef] [PubMed]
  23. J. B. Pendry and A. Mackinnon, Phys. Rev. Lett. 69, 2772 (1992). [CrossRef] [PubMed]
  24. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  25. G. Blendstrup, D. Bershader, and P. W. Langhoff, AIAA J. 16, 1106 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited