OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 24 — Dec. 15, 2009
  • pp: 3794–3796

Photonic scanning receiver using an electrically tuned fiber Bragg grating

P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis  »View Author Affiliations

Optics Letters, Vol. 34, Issue 24, pp. 3794-3796 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 5 - cm -long electrically tuned fiber Bragg grating is used to filter a microwave signal on an optical carrier at 1.55 μ m . A chirped distributed-feedback structure is employed, with a transmission bandwidth of 54 MHz and relative optical carrier rejection of > 30 dB for rf frequencies > 2 GHz . The rapid monotonic sweep of the Bragg wavelength is translated into a fast-frequency sweep for rf analysis.

© 2009 Optical Society of America

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 8, 2009
Revised Manuscript: October 20, 2009
Manuscript Accepted: October 30, 2009
Published: December 4, 2009

P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, "Photonic scanning receiver using an electrically tuned fiber Bragg grating," Opt. Lett. 34, 3794-3796 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007). [CrossRef]
  2. A. J. Seeds and K. J. Williams, J. Lightwave Technol. 24, 4628 (2006). [CrossRef]
  3. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006). [CrossRef]
  4. J. Capmany, B. Ortega, D. Pastor, and S. Sales, J. Lightwave Technol. 23, 702 (2005). [CrossRef]
  5. S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, IEEE Photonics Technol. Lett. 12, 1207 (2000). [CrossRef]
  6. E. H. W. Chan and R. A. Minasian, IEEE Photonics Technol. Lett. 21, 197 (2009). [CrossRef]
  7. M. Popov, P.-Y. Fonjallaz, and O. Gunnarsson, IEEE Photonics Technol. Lett. 17, 663 (2005). [CrossRef]
  8. J. B. Tsui, Microwave Receivers with Electronic Warfare Applications (Krieger, 1992).
  9. J. B. Tsui, Digital Techniques for Wideband Receivers, 2nd ed. (SciTech, 2004).
  10. D. Vaccaro, Electronic Warfare Receiving Systems (Artech House, 1993).
  11. Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P-Y. Fonjallaz, Opt. Express 15, 14948 (2007). [CrossRef] [PubMed]
  12. M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, and W. Margulis, Opt. Lett. 27, 1643 (2002). [CrossRef]
  13. M. Popov, P-Y. Fonjallaz, D. Berlemont, and O. Gunnarsson, in Proceedings of International Topical Meeting on Microwave Photonics, 2003, MWP 2003 (IEEE, 2003) pp. 81-84. [CrossRef]
  14. Z. Yu, A. Djupsjobacka, M. Popov, and P-Y. Fonjallaz, IEEE Photonics Technol. Lett. 19, 233 (2007). [CrossRef]
  15. H. Knape and W. Margulis, Opt. Lett. 32, 614 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited