OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 3 — Feb. 1, 2009
  • pp: 238–240

Intracavity dispersion effect on timing jitter of ultralow noise mode-locked semiconductor based external-cavity laser

S. Gee, S. Ozharar, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett  »View Author Affiliations


Optics Letters, Vol. 34, Issue 3, pp. 238-240 (2009)
http://dx.doi.org/10.1364/OL.34.000238


View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the generation of optical pulse trains with 380 as of residual timing jitter ( 1 Hz 1 MHz ) from a mode-locked external-cavity semiconductor laser, through a combination of optimizing the intracavity dispersion and utilizing a high-power, low-noise InGaAsP quantum-well slab-coupled optical waveguide amplifier gain medium. This is, to our knowledge, the lowest residual timing jitter reported to date from an actively mode-locked laser.

© 2009 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 15, 2008
Revised Manuscript: November 25, 2008
Manuscript Accepted: December 1, 2008
Published: January 21, 2009

Citation
S. Gee, S. Ozharar, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, "Intracavity dispersion effect on timing jitter of ultralow noise mode-locked semiconductor based external-cavity laser," Opt. Lett. 34, 238-240 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-3-238


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001). [CrossRef]
  2. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005). [CrossRef]
  3. L. A. Jiang, E. P. Ippen, and H. Yokoyama, J. Opt. Fiber Commun. Rep. 2, 1 (2005). [CrossRef]
  4. F. Rana, R. Ram, and H. A. Haus, IEEE J. Quantum Electron. 40, 41 (2004). [CrossRef]
  5. P. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, IEEE Photon. Technol. Lett. 17, 279 (2005). [CrossRef]
  6. S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plant, and P. W. Juodawlkis, Opt. Lett. 30, 2742 (2005). [CrossRef] [PubMed]
  7. A. Lance, W. Seal, and F. Labaar, Infrared and Millimeter Waves 11, 239 (1984).
  8. D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992). [CrossRef]
  9. H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993). [CrossRef]
  10. K. Petermann, IEEE J. Quantum Electron. 15, 566 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited