OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 34, Iss. 3 — Feb. 1, 2009
  • pp: 340–342

Quantifying the paraxiality for laser beams from the M 2 factor

Pablo Vaveliuk  »View Author Affiliations


Optics Letters, Vol. 34, Issue 3, pp. 340-342 (2009)
http://dx.doi.org/10.1364/OL.34.000340


View Full Text Article

Enhanced HTML    Acrobat PDF (130 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A useful relationship among the parameter called paraxial estimator [ Opt. Lett. 32, 927 (2007) ] and two parameters concerning the beam quality, the M 2 factor, and the beam spot size was derived. This relationship allows one to quantify the paraxiality for a monochromatic laser beam from standard measurements extending the applicability of such an estimator for real beams even if the beam profile shape does not have a closed-form representation. Hence, the paraxial estimator might be a suitable tool for deepening the analysis on the quality of a laser beam.

© 2009 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 20, 2008
Revised Manuscript: December 5, 2008
Manuscript Accepted: December 6, 2008
Published: January 28, 2009

Citation
Pablo Vaveliuk, "Quantifying the paraxiality for laser beams from the M2 factor," Opt. Lett. 34, 340-342 (2009)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-3-340


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, Proc. SPIE 1224, 2 (1990). [CrossRef]
  2. T. F. Johnston, Jr., M. W. Sasnett, J.-L. Doumont, and A. E. Siegman, Opt. Lett. 17, 198 (1992). [CrossRef] [PubMed]
  3. ISO Standard 11146, “Lasers and laser-related equipment--Test methods for laser beam widths, divergence angles and beam propagation ratios” (International Organization for Standardization, 2005).
  4. A. E. Siegman, G. Nemes, and J. Serna, in Proceedings of DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1.
  5. P. Vaveliuk and M. Lopes da Silva, Opt. Lett. 33, 2035 (2008). [CrossRef] [PubMed]
  6. M. Lax, W. H. Louisell, and W. B. McKnight, Phys. Rev. A 11, 1365 (1975). [CrossRef]
  7. P. Vaveliuk, G. F. Zebende, M. A. Moret, and B. Ruiz, J. Opt. Soc. Am. A 24, 3297 (2007). [CrossRef]
  8. A. E. Siegman, Lasers (University Science Books, 1986).
  9. P. Vaveliuk, B. Ruiz, and A. Lencina, Opt. Lett. 32, 927 (2007). [CrossRef] [PubMed]
  10. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987). [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  12. M. W. Sasnett, in The Physics and Technology of Laser Resonators, D.R.Hall and P.E.Jackson, eds. (Adam Hilger, 1989).
  13. C.E.Webb and J.D. C.Jones, eds. Handbook of Laser Technology and Applications: Vol. II: Laser Design and Laser Systems (IOP, 2004).
  14. C. J. R. Sheppard and T. Wilson, IEE J. Microwaves, Opt. Acoust. 2, 105 (1978). [CrossRef]
  15. F. Gori, G. Guattari, and C. Padovani, Opt. Commun. 64, 491 (1987). [CrossRef]
  16. R. Borghi and M. Santarsiero, Opt. Lett. 22, 262 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited