Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fast and slow light in zigzag microring resonator chains

Not Accessible

Your library or personal account may give you access

Abstract

We analyze fast- and slow-light transmission in a zigzag microring resonator chain. In the superluminal case, a new light-transmission effect is found whereby the input optical pulse is reproduced in an almost-simultaneous manner at the various system outputs. When the input carrier is tuned to a different frequency, the system permits to slow down the propagating optical signal. Between these two extreme cases, the relative delay can be tuned within a broad range. We propose, and analyze numerically, a laser-array configuration for the stable operation of active devices.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Simultaneous fast and slow light in microring resonators

Chris Fietz and Gennady Shvets
Opt. Lett. 32(24) 3480-3482 (2007)

Incoherent “Slow and Fast Light”

Valerii Zapasskii and Gleb Kozlov
Opt. Express 17(24) 22154-22162 (2009)

Magnetically induced simultaneous slow and fast light

Bin Luo, Yu Liu, and Hong Guo
Opt. Lett. 35(1) 64-66 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved