OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 6 — Mar. 15, 2009
  • pp: 728–730

Broadband omnidirectional antireflection coatings optimized by genetic algorithm

David J. Poxson, Martin F. Schubert, Frank W. Mont, E. F. Schubert, and Jong Kyu Kim  »View Author Affiliations

Optics Letters, Vol. 34, Issue 6, pp. 728-730 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optimized graded-refractive-index (GRIN) antireflection (AR) coating with broadband and omnidirectional characteristics—as desired for solar cell applications—designed by a genetic algorithm is presented. The optimized three-layer GRIN AR coating consists of a dense Ti O 2 and two nanoporous Si O 2 layers fabricated using oblique-angle deposition. The normal incidence reflectance of the three-layer GRIN AR coating averaged between 400 and 700 nm is 3.9%, which is 37% lower than that of a conventional single-layer Si 3 N 4 coating. Furthermore, measured reflection over the 410 740 nm range and wide incident angles 40°–80° is reduced by 73% in comparison with the single-layer Si 3 N 4 coating, clearly showing enhanced omnidirectionality and broadband characteristics of the optimized three-layer GRIN AR coating.

© 2009 Optical Society of America

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(310.4165) Thin films : Multilayer design
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Thin Films

Original Manuscript: December 11, 2008
Revised Manuscript: January 14, 2009
Manuscript Accepted: January 26, 2009
Published: March 5, 2009

David J. Poxson, Martin F. Schubert, Frank W. Mont, E. F. Schubert, and Jong Kyu Kim, "Broadband omnidirectional antireflection coatings optimized by genetic algorithm," Opt. Lett. 34, 728-730 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Rayleigh, Proc. London Math. Soc. 11, 51 (1880). [CrossRef]
  2. W. H. Southwell, Opt. Lett. 8, 584 (1983). [CrossRef] [PubMed]
  3. D. Poitras and J. A. Dobrowolski, Appl. Opt. 43, 1286 (2004). [CrossRef] [PubMed]
  4. M. Chen, H. Chang, A. S. P. Chang, S.-Y. Lin, J.-Q. Xi, and E. F. Schubert, Appl. Opt. 46, 6533 (2007). [CrossRef] [PubMed]
  5. S. R. Kennedy and M. J. Brett, Appl. Opt. 42, 4573 (2003). [CrossRef] [PubMed]
  6. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
  7. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, J. Adv. Mater. 20, 801 (2008). [CrossRef]
  8. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, Opt. Lett. 33, 2527 (2008). [CrossRef] [PubMed]
  9. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008). [CrossRef] [PubMed]
  10. E. H. Hect, Optics (Addison-Wesley, 2002), p. 429.
  11. D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 93, 101914 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited