OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 6 — Mar. 15, 2009
  • pp: 779–781

Fundamental limit for two-dimensional passive devices

Rafael Piestun and C. Martijn de Sterke  »View Author Affiliations

Optics Letters, Vol. 34, Issue 6, pp. 779-781 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There is an upper limit to the number of electromagnetic communication channels in two-dimensional linear passive components that depends only on the geometrical dimensions but is independent of the permittivity function, the actual external shape, or the internal design. The limit applies to both weakly and strongly scattering waves. When the permittivity contrast is low, a tighter limit exists that includes only multiple scattering waves. A detailed analysis helps compare these two limits and leads to insights that apply to devices, such as photonic crystals and microresonators, as well as lossless metamaterials, superlenses, and cloaking devices. As an example, we establish a rigorous scaling relation for the upper bound of the number of demultiplexing channels in superprisms.

© 2009 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(260.2030) Physical optics : Dispersion
(290.4210) Scattering : Multiple scattering
(350.7420) Other areas of optics : Waves

ToC Category:

Original Manuscript: October 15, 2008
Revised Manuscript: December 26, 2008
Manuscript Accepted: January 5, 2009
Published: March 10, 2009

Rafael Piestun and C. Martijn de Sterke, "Fundamental limit for two-dimensional passive devices," Opt. Lett. 34, 779-781 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Piestun and D. A. B. Miller, J. Opt. Soc. Am. A 17, 892 (2000). [CrossRef]
  2. D. A. B. Miller, J. Opt. Soc. Am. B 24, A1 (2007). [CrossRef]
  3. R. P. Porter and A. J. Devaney, J. Opt. Soc. Am. 72, 1707 (1982). [CrossRef]
  4. A. Brancaccio, G. Leone, and R. Pierri, J. Opt. Soc. Am. A 15, 1909 (1998). [CrossRef]
  5. O. M. Bucci, L. Crocco, and T. Isernia, J. Opt. Soc. Am. A 16, 1788 (1999). [CrossRef]
  6. O. M. Bucci and T. Isernia, Radio Sci. 32, 2123 (1997). [CrossRef]
  7. G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics (Springer, 2002).
  8. A. W. Lohmann, in Research Paper RJ-438 (IBM San Jose Research Lab, 1967), p. 1.
  9. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, J. Lightwave Technol. 17, 2032 (1999). [CrossRef]
  10. B. Momeni and A. Adibi, Appl. Phys. B 77, 555 (2003). [CrossRef]
  11. S. T. Chu, B. E. Little, W. T. Pan, T. Kaneko, S. Sato, and Y. Kokubun, J. Endovasc. Ther. 11, 691 (1999).
  12. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. F. Xu, and M. Lipson, Opt. Express 14, 2317 (2006). [CrossRef] [PubMed]
  13. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 68, 045115 (2003). [CrossRef]
  14. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited