OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 34, Iss. 6 — Mar. 15, 2009
  • pp: 842–844

Femtosecond soliton source with fast and broad spectral tunability

Martin E. Masip, A. A. Rieznik, Pablo G. König, Diego F. Grosz, Andrea V. Bragas, and Oscar E. Martinez  »View Author Affiliations

Optics Letters, Vol. 34, Issue 6, pp. 842-844 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration ( 40 fs ) and spectral widths ( 20 nm ) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters.

© 2009 Optical Society of America

OCIS Codes
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 5, 2009
Revised Manuscript: January 30, 2009
Manuscript Accepted: February 2, 2009
Published: March 13, 2009

Martin E. Masip, A. A. Rieznik, Pablo G. König, Diego F. Grosz, Andrea V. Bragas, and Oscar E. Martinez, "Femtosecond soliton source with fast and broad spectral tunability," Opt. Lett. 34, 842-844 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973). [CrossRef]
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980). [CrossRef]
  3. P. Gordon, Opt. Lett. 11, 662 (1986). [CrossRef] [PubMed]
  4. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1994).
  5. P. St. J. Russell, Science 299, 358 (2003). [CrossRef] [PubMed]
  6. X. Liu, C. Xu, W. H. Know, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, Opt. Lett. 26, 358 (2001). [CrossRef]
  7. N. NishizawaY. Ito, and T. Goto, IEEE Photonics Technol. Lett. 14, 986 (2002). [CrossRef]
  8. N. Nishizawa and T. Goto, IEEE Photonics Technol. Lett. 11, 325 (1999). [CrossRef]
  9. N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, Phys. Rev. E 74, 036617 (2006). [CrossRef]
  10. A. A. Rieznik, “MATLAB scripts for complete Raman response simulations,” http://photonics.incubadora.fapesp.br/portal/download/ssfm-with-raman.
  11. K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, Opt. Lett. 24, 113 (1999). [CrossRef]
  12. K. König, J. Microsc. 200, 83 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited