OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 35, Iss. 10 — May. 15, 2010
  • pp: 1512–1514

Fabrication of low-loss, single-mode-channel waveguide with DNA-CTMA biopolymer by multistep processing technology

Jun Zhou, Zhen Yong Wang, Xin Yang, C.-Y. Wong, and Edwin Y.B. Pun  »View Author Affiliations


Optics Letters, Vol. 35, Issue 10, pp. 1512-1514 (2010)
http://dx.doi.org/10.1364/OL.35.001512


View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multistep processing and reactive ion etching technique has been developed to fabricate optical channel waveguides based on deoxyribonucleic acid-cetyltrimethylammonium biopolymer material. The channel waveguides exhibit excellent single-mode output and high confinement of light because of the sharp waveguide profile with very smooth surfaces and vertical sidewalls. The measurement results show that these channel waveguides have low propagation losses and small polarization dependent losses at 633, 1310, and 1550   nm wavelengths.

© 2010 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(230.7380) Optical devices : Waveguides, channeled
(160.1435) Materials : Biomaterials

ToC Category:
Optical Devices

History
Original Manuscript: December 2, 2009
Revised Manuscript: March 15, 2010
Manuscript Accepted: March 30, 2010
Published: May 4, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Jun Zhou, Zhen Yong Wang, Xin Yang, C.-Y. Wong, and Edwin Y. B. Pun, "Fabrication of low-loss, single-mode-channel waveguide with DNA-CTMA biopolymer by multistep processing technology," Opt. Lett. 35, 1512-1514 (2010)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-10-1512


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Day and M. Gu, Appl. Phys. Lett. 80, 2404 (2002). [CrossRef]
  2. W. H. Wong, J. Zhou, and E. Y. B. Pun, Appl. Phys. Lett. 78, 2110 (2001). [CrossRef]
  3. L. Wang, J. Yoshida, and N. Ogata, Chem. Mater. 13, 1273 (2001). [CrossRef]
  4. A. J. Steckl, Nature Photon. 1, 3 (2007). [CrossRef]
  5. J. Zhou, A. Pyayt, L. R. Dalton, J. Luo, A. K. Y. Jen, and A. Chen, IEEE Photon. Technol. Lett. 18, 2221 (2006). [CrossRef]
  6. W. H. Wong and E. Y. B. Pun, Appl. Phys. Lett. 79, 3576 (2001). [CrossRef]
  7. N. Jukam and M. S. Sherwin, Appl. Phys. Lett. 83, 21 (2003). [CrossRef]
  8. E. M. Heckman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, Appl. Phys. Lett. 87, 211115 (2005). [CrossRef]
  9. G. Zhang, L. Wang, J. Yoshida, and N. Ogata, Proc. SPIE 4580, 337 (2001). [CrossRef]
  10. K. Yamaoka, Y. Kagami, M. Wada, A. Watanuki, J. Yoshida, H. Ikeda, and N. Ogata, Proc. SPIE 5624, 193 (2005). [CrossRef]
  11. Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, J. Lightwave Technol. 18, 563 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited