OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 10 — May. 15, 2010
  • pp: 1659–1661

Combining radiationless interference with evanescent field amplification

Varat Intaraprasonk, Zongfu Yu, and Shanhui Fan  »View Author Affiliations

Optics Letters, Vol. 35, Issue 10, pp. 1659-1661 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The conventional approach for radiationless interference exploits the interference of evanescent components for the purpose of deep-subwavelength focusing and image formation. As a result, deep subwavelength feature size is achieved at the price of severe exponential decay of the field strength. We propose to overcome the limitation of the conventional approach by combining radiationless interference with evanescent field amplification as provided by the surface polaritons at the interface between positive- and negative-dielectric materials. Our approach removes the exponential decay and, moreover, allows a much wider range of wave vectors, including both propagating and evanescent field components, to participate in the image-formation process.

© 2010 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Optics at Surfaces

Original Manuscript: January 15, 2010
Revised Manuscript: March 27, 2010
Manuscript Accepted: April 8, 2010
Published: May 7, 2010

Varat Intaraprasonk, Zongfu Yu, and Shanhui Fan, "Combining radiationless interference with evanescent field amplification," Opt. Lett. 35, 1659-1661 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005). [CrossRef] [PubMed]
  3. D. Melville, R. Blaikie, and C. Wolf, Appl. Phys. Lett. 84, 4403 (2004). [CrossRef]
  4. M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, Phys. Rev. B 78, 195121 (2008). [CrossRef]
  5. R. Merlin, Science 317, 927 (2007). [CrossRef] [PubMed]
  6. L. E. Helseth, Opt. Commun. 281, 1981 (2008). [CrossRef]
  7. L. E. Helseth, Phys. Rev. A 78, 013819 (2008). [CrossRef]
  8. A. Grbic and R. Merlin, IEEE Trans. Antennas Propag. 56, 3159 (2008). [CrossRef]
  9. A. Grbic, L. Jiang, and R. Merlin, Science 320, 511 (2008). [CrossRef] [PubMed]
  10. L. Markley, A. Wong, Y. Wang, and G. Eleftheriades, Phys. Rev. Lett. 101, 113901 (2008). [CrossRef] [PubMed]
  11. G. V. Eleftheriades and A. M. H. Wong, IEEE Microw. Wirel. Compon. Lett. 18, 236 (2008). [CrossRef]
  12. A. B. Evlyukhin and S. I. Bozhevolnyi, Opt. Express 16, 17429 (2008). [CrossRef] [PubMed]
  13. R. Gordon, Phys. Rev. Lett. 102, 207402 (2009). [CrossRef] [PubMed]
  14. M. F. Imani and A. Grbic, IEEE Antennas Wireless Propag. Lett. 8, 421 (2009). [CrossRef]
  15. V. Intaraprasonk and S. Fan, Opt. Lett. 34, 2967 (2009). [CrossRef] [PubMed]
  16. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  17. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004). [CrossRef] [PubMed]
  18. J. T. Shen, P. B. Catrysse, and S. Fan, Phys. Rev. Lett. 94, 197401 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited