OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 10 — May. 15, 2010
  • pp: 1704–1706

Generalized Stokes parameters in phase space

Serkan Sahin  »View Author Affiliations

Optics Letters, Vol. 35, Issue 10, pp. 1704-1706 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The generalized Stokes parameters (GSP) are studied under the theory of phase space. It is noted that phase-space Stokes parameters can be a useful tool for Wigner distribution function measurements. Electromagnetic Wigner functions are introduced by use of the two-point statistics of GSP. The advantage in the GSP is that they can be measured in terms of the electric correlation matrix (which is a measurable quantity) or they can be measured independently. Hence, the GSP help in finding the polarization and coherence properties of electromagnetic beams. Within this framework, by using the GSP in phase space, the intensity feature of electromagnetic beams in phase space is given, as well.

© 2010 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(070.7425) Fourier optics and signal processing : Quasi-probability distribution functions

ToC Category:
Physical Optics

Original Manuscript: December 11, 2009
Revised Manuscript: April 14, 2010
Manuscript Accepted: April 19, 2010
Published: May 14, 2010

Serkan Sahin, "Generalized Stokes parameters in phase space," Opt. Lett. 35, 1704-1706 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. K. Zachos, D. B. Fairlie, and T. L. Curtright, Quantum Mechanics in Phase Space: An Overview with Selected Papers (World Scientific, 2005). [CrossRef]
  2. E. Mukamel, K. Banaszek, I. A. Walmsley, and C. Dorrer, Opt. Lett. 28, 1317 (2003). [CrossRef] [PubMed]
  3. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. Rev. Lett. 70, 1244 (1993). [CrossRef] [PubMed]
  4. K. Duan and B. Lu, J. Opt. Soc. Am. B 22, 1585 (2005). [CrossRef]
  5. O. Korotkova and E. Wolf, Opt. Lett. 30, 198 (2005). [CrossRef] [PubMed]
  6. A. C. Fannjiang, J. Phys. A 40, 13667 (2007). [CrossRef]
  7. M. J. Bastiaans, J. Opt. Soc. Am. 69, 1710 (1979). [CrossRef]
  8. M. J. Bastiaans, J. Mod. Opt. 26, 1265 (1979).
  9. Y. Zhang and B. Lu, Opt. Lett. 29, 2710 (2004). [CrossRef] [PubMed]
  10. S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, J. Opt. A Pure Appl. Opt. 10, 055001 (2008). [CrossRef]
  11. A. Luis, Opt. Commun. 251, 243 (2005). [CrossRef]
  12. S. Cho, J. C. Petruccelli, and M. A. Alonso, J. Mod. Opt. 56, 1843 (2009). [CrossRef]
  13. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).
  14. S. Sahin, O. Korotkova, G. Zhang, and J. Pu, J. Opt. A Pure Appl. Opt. 11, 085703 (2009). [CrossRef]
  15. H. Roychowdhury and O. Korotkova, Opt. Commun. 249, 379 (2005). [CrossRef]
  16. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  17. C. Brosseau, Appl. Opt. 34, 4788 (1995). [CrossRef] [PubMed]
  18. R. Castaneda, R. Betancur, and J. F. Restrepo, J. Opt. Soc. Am. A 25, 2518 (2008). [CrossRef]
  19. C. Brosseau, Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  20. B. Kanseri and H. C. Kandpal, Opt. Lett. 33, 2410 (2008). [CrossRef] [PubMed]
  21. B. Kanseri, S. Rath, and H. C. Kandpal, Opt. Lett. 34, 719(2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited