OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 11 — Jun. 1, 2010
  • pp: 1908–1910

Nontrivial Bloch oscillations in waveguide arrays with second-order coupling

Gang Wang, Ji Ping Huang, and Kin Wah Yu  »View Author Affiliations

Optics Letters, Vol. 35, Issue 11, pp. 1908-1910 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Under the influence of the next-nearest-neighbor interaction, we theoretically investigate the occurrence of Bloch oscillations in zigzag waveguide arrays. Because of the special topological configuration of the lattice itself, the second-order coupling (SOC) can be enhanced significantly and leads to the band alteration beyond the nearest-neighbor model, i.e., the offset of minimum value from the band edge. Contrary to the behavior in the vanishing SOC, the oscillation patterns exhibit new features, namely, a double turning-back occurs when the beam approaches the band edge. Our results can be applied to some ordered-lattice systems.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

Original Manuscript: January 4, 2010
Revised Manuscript: April 24, 2010
Manuscript Accepted: April 30, 2010
Published: May 28, 2010

Gang Wang, Ji Ping Huang, and Kin Wah Yu, "Nontrivial Bloch oscillations in waveguide arrays with second-order coupling," Opt. Lett. 35, 1908-1910 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006). [CrossRef]
  2. S. Longhi, Laser Photon. Rev. 3, 243 (2009), and references therein. [CrossRef]
  3. C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Phys. Rev. Lett. 70, 3319 (1993). [CrossRef] [PubMed]
  4. M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Phys. Rev. Lett. 76, 4508 (1996). [CrossRef] [PubMed]
  5. T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, Phys. Rev. Lett. 83, 4752 (1999). [CrossRef]
  6. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83, 4756 (1999). [CrossRef]
  7. D. Hennig, Eur. Phys. J. B 20, 419 (2001). [CrossRef]
  8. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003). [CrossRef] [PubMed]
  9. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Rep. 463, 1 (2008). [CrossRef]
  10. N. Efremidis and D. Christodoulides, Phys. Rev. E 65, 056607 (2002). [CrossRef]
  11. F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, and A. Tünnermann, Opt. Lett. 33, 2689 (2008). [CrossRef] [PubMed]
  12. A. Szameit, R. Keil, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, and A. Tünnermann, Opt. Lett. 34, 2838 (2009). [CrossRef] [PubMed]
  13. A. Szameit, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. A 77, 043804 (2008). [CrossRef]
  14. U. Peschel, T. Pertsch, and F. Lederer, Opt. Lett. 23, 1701 (1998). [CrossRef]
  15. T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, Appl. Phys. Lett. 80, 3247 (2002). [CrossRef]
  16. S. Longhi, Phys. Rev. B 76, 195117 (2007). [CrossRef]
  17. From the Hamiltonian H=σx+2κ1cos⁡(kx)+2κ2cos⁡(2kx), the motion equations are given: dx/dz=dH/dkx, dkx/dz=−dH/dx. With appropriate initial conditions, solutions take the form kx=σz, x=x0−(2/σ)(κ1+κ2)+(2κ1/σ)cos⁡(σz)+(2κ2/σ)cos⁡(2σz). The BO path directly reflects the corresponding dispersion relation magnified by 1/σ. The Hamiltonian optics offer a good approximation of the field evolution.
  18. A. Fratalocchi and G. Assanto, Opt. Lett. 31, 3351 (2006). [CrossRef] [PubMed]
  19. S. Longhi, Opt. Lett. 33, 473 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited