OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 12 — Jun. 15, 2010
  • pp: 1983–1985

Continuous-wave Nd-doped polymer lasers

Christos Grivas, Jing Yang, Mart B. J. Diemeer, Alfred Driessen, and Markus Pollnau  »View Author Affiliations

Optics Letters, Vol. 35, Issue 12, pp. 1983-1985 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Continuous-wave laser operation at 1060.2 nm was demonstrated in polymer channel waveguides doped with a Nd complex above an absorbed pump threshold of 50 mW . The highest slope efficiency of 2.15% was obtained with 5% outcoupling, resulting in a maximum output power of 0.98 mW . Lasing was also achieved on the quasi-three-level 878 nm transition above a threshold of 74.5 mW . A slope efficiency of 0.35% and an output power of 190 μm were obtained with 2.2% outcoupling. Long-term, stable cw laser operation over at least 2 h was demonstrated, indicating the durability of the polymer gain medium.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3380) Lasers and laser optics : Laser materials
(140.3530) Lasers and laser optics : Lasers, neodymium
(160.5690) Materials : Rare-earth-doped materials
(230.7380) Optical devices : Waveguides, channeled
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: March 29, 2010
Manuscript Accepted: May 5, 2010
Published: June 7, 2010

Christos Grivas, Jing Yang, Mart B. J. Diemeer, Alfred Driessen, and Markus Pollnau, "Continuous-wave Nd-doped polymer lasers," Opt. Lett. 35, 1983-1985 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007). [CrossRef] [PubMed]
  2. A. Costela, I. García-Moreno, and R. Sastre, Phys. Chem. Chem. Phys. 5, 4745 (2003). [CrossRef]
  3. L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002). [CrossRef]
  4. B. Whittaker, Nature 228, 157 (1970). [CrossRef] [PubMed]
  5. H. Taniguchi, J. Kido, M. Nishiya, and S. Sasaki, Appl. Phys. Lett. 67, 1060 (1995). [CrossRef]
  6. J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, Opt. Lett. 34, 473 (2009). [CrossRef] [PubMed]
  7. J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, IEEE J. Quantum Electron. 46, 1043 (2010).
  8. M. B. J. Diemeer, L. T. H. Hilderink, R. Dekker, and A. Driessen, IEEE Photonics Technol. Lett. 18, 1624 (2006). [CrossRef]
  9. D. Findley and R. A. Clay, Phys. Lett. 20, 277 (1966). [CrossRef]
  10. W. P. Risk, J. Opt. Soc. Am. B 5, 1412 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited