OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 12 — Jun. 15, 2010
  • pp: 2085–2087

Evanescently coupled interface states in the gap between two Bragg reflectors

Stuart Brand, Richard A. Abram, and Mikhail A. Kaliteevski  »View Author Affiliations

Optics Letters, Vol. 35, Issue 12, pp. 2085-2087 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Interface states are known to exist at the surface of an appropriately structured Bragg reflector. If such reflectors are present on the surfaces of two prisms separated by a narrow gap, the evanescently coupled interface states can interact to produce a pair of very narrow transmission lines, the separation of which can be adjusted by varying the size of the gap between the two prisms. Thus, although only a single cavity is involved, the spectral properties of the system are similar to those of a dual-cavity photonic microstructure. In addition to other potential applications, we propose that such a structure could form the basis of an adjustable beat-frequency emitter in the terahertz regime.

© 2010 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(240.0240) Optics at surfaces : Optics at surfaces
(140.3948) Lasers and laser optics : Microcavity devices
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: March 25, 2010
Revised Manuscript: May 24, 2010
Manuscript Accepted: May 25, 2010
Published: June 11, 2010

Stuart Brand, Richard A. Abram, and Mikhail A. Kaliteevski, "Evanescently coupled interface states in the gap between two Bragg reflectors," Opt. Lett. 35, 2085-2087 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, A. Yariv, and C.-S. Hong, J. Opt. Soc. Am. 67, 423 (1977). [CrossRef]
  2. R. L. Nelson and J. W. Haus, Appl. Phys. Lett. 83, 1089 (2003). [CrossRef]
  3. C. Bhan and P. C. Mehta, Opt. and Laser Technol. 21, 44 (1989). [CrossRef]
  4. H.-Y. Lee and T. Yao, J. Kor. Phys. Soc. 44, 387 (2004).
  5. O. Zabeida, A. Amassian, S. Larouche, C. Lavigne, J. E. Klemberg-Sapieha, and L. Martinu, Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2001), paper WA7.
  6. S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Phys. D 43, 145104 (2010). [CrossRef]
  7. S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Appl. Phys. 106, 113109 (2009). [CrossRef]
  8. D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, J. Mod. Optics 51, 437 (2004). [CrossRef]
  9. D. Dragoman and M. Dragoman, Prog. Quant. Electron. 28, 1 (2004). [CrossRef]
  10. G. K. Kitaeva, Laser Phys. Lett. 5, 559 (2008). [CrossRef]
  11. T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, Appl. Phys. Lett. 95, 111106 (2009). [CrossRef]
  12. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, Opt. Express 17, 13851 (2009). [CrossRef] [PubMed]
  13. R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited