OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 14 — Jul. 15, 2010
  • pp: 2472–2474

Guided-mode resonant wave plates

Robert Magnusson, Mehrdad Shokooh-Saremi, and Eric G. Johnson  »View Author Affiliations

Optics Letters, Vol. 35, Issue 14, pp. 2472-2474 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (512 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce half-wave and quarter-wave retarders based on the dispersion properties of guided-mode resonance elements. We design the wave plates using numerical electromagnetic models joined with the particle swarm optimization method. The wave plates operate in reflection. We provide computed results for reflectance and phase in the telecommunication spectral region near 1.55 μm wavelength. A surface-relief grating etched in glass and overcoated with silicon yields a half-wave plate with nearly equal amplitudes of the TE and TM polarization components and π phase difference across a bandwidth exceeding 50 nm . Wider operational bandwidths are obtainable with more complex designs involving glass substrates and mixed silicon/hafnium dioxide resonant gratings. The results indicate a potential new approach to fashion optical retarders.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.2440) Instrumentation, measurement, and metrology : Filters
(130.2790) Integrated optics : Guided waves
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: April 7, 2010
Revised Manuscript: May 25, 2010
Manuscript Accepted: June 27, 2010
Published: July 14, 2010

Robert Magnusson, Mehrdad Shokooh-Saremi, and Eric G. Johnson, "Guided-mode resonant wave plates," Opt. Lett. 35, 2472-2474 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  2. R. Magnusson and D. Shin, in Encyclopedia of Physical Science and Technology, 3rd ed. (Academic, 2002), Vol. 4, pp. 421–440.
  3. P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979). [CrossRef]
  4. L. Mashev and E. Popov, Opt. Comm. 55, 377 (1985). [CrossRef]
  5. I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989). [CrossRef]
  6. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985). [CrossRef]
  7. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993). [CrossRef] [PubMed]
  8. Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004). [CrossRef] [PubMed]
  9. R. Magnusson and Y. Ding, “Resonant leaky-mode optical devices and associated methods,” U.S. patent number 7,689,086 (March 30, 2010).
  10. R. Magnusson, M. Shokooh-Saremi, and X. Wang, Opt. Express 18, 108 (2010). [CrossRef] [PubMed]
  11. I. Vartiainen, J. Tervo, and M. Kuittinen, Opt. Lett. 34, 1648 (2009). [CrossRef] [PubMed]
  12. R. Eberhart and J. Kennedy, in Proceedings of IEEE Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
  13. M. Shokooh-Saremi and R. Magnusson, Opt. Lett. 32, 894 (2007). [CrossRef] [PubMed]
  14. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995). [CrossRef]
  15. W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, Jpn. J. Appl. Phys. 43, L439 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited