OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 2 — Jan. 15, 2010
  • pp: 217–219

Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg  »View Author Affiliations

Optics Letters, Vol. 35, Issue 2, pp. 217-219 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In lensless digital in-line holographic microscopy, currently applied fast reconstruction techniques use approximations limiting the usable NA for optical resolution. The computational effort for an exact scalar reconstruction with straightforward algorithms depends on the relation between the desired resolution and the given pixel pitch of the detector. So there is a trade-off between achievable image resolution and required computation time. We present an exact reconstruction algorithm that guaranties optimum resolution with affordable computation time. Experimental results show a realized NA of at least 0.62. A 1 megapixel hologram was reconstructed in about 1.5 s .

© 2010 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(180.0180) Microscopy : Microscopy
(090.1995) Holography : Digital holography
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:

Original Manuscript: September 4, 2009
Revised Manuscript: November 5, 2009
Manuscript Accepted: November 30, 2009
Published: January 14, 2010

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, "Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit," Opt. Lett. 35, 217-219 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, Nature 161, 777 (1948). [CrossRef] [PubMed]
  2. D. Wang, J. Zhao, F. Zhang, G. Pedrini, and W. Osten, Appl. Opt. 47, D12 (2008). [CrossRef] [PubMed]
  3. F. Zhang, G. Pedrini, and W. Osten, Opt. Lett. 31, 1633 (2006). [CrossRef] [PubMed]
  4. L. Ahrenberg, A. J. Page, B. M. Hennelly, J. B. McDonald, and T. J. Naughton, J. Display Technol. 5, 111 (2009). [CrossRef]
  5. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992). [CrossRef]
  6. J. Garcia-Sucerquia, D. Alvarez-Palacio, and J. Kreuzer, in Adaptive Optics: Topical Meetings on CD-ROM (2007), p. DMB4.
  7. M. Kanka, R. Riesenberg, and H. J. Kreuzer, Opt. Lett. 34, 1162 (2009). [CrossRef] [PubMed]
  8. J. W. Goodman, Introduction To Fourier Optics, 2nd international ed. (McGraw-Hill, 1996).
  9. P. Gaydecki, Foundations of Digital Signal Processing: Theory, Algorithms and Hardware Design (IEE Circuits, Devices and Systems) (The Institution of Engineering and Technology, 2004). [CrossRef]
  10. M. Frigo and S. G. Johnson, Proc. IEEE 93, 216 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited