OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 20 — Oct. 15, 2010
  • pp: 3357–3359

Tunable optical-path correlator for distributed strain or temperature-sensing application

Yonggui Yuan, Bing Wu, Jun Yang, and Libo Yuan  »View Author Affiliations

Optics Letters, Vol. 35, Issue 20, pp. 3357-3359 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on a cavity-length tunable fiber-loop resonator, a multibeam optical path difference is generated. It can be used to match and correlate the reflective signals from the partial reflective ends of each sensing fiber gauge. The correlation signals correspond to the sensing gauge lengths, and the shift of the correlation peak is related with the fiber sensing gauge elongation caused by strain or temperature. Therefore, it can be used to measure distributed strain or deformation for smart structural monitoring.

© 2010 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4230) Fiber optics and optical communications : Multiplexing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 12, 2010
Manuscript Accepted: August 12, 2010
Published: October 8, 2010

Yonggui Yuan, Bing Wu, Jun Yang, and Libo Yuan, "Tunable optical-path correlator for distributed strain or temperature-sensing application," Opt. Lett. 35, 3357-3359 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Beheim, Appl. Opt. 24, 2335 (1985). [CrossRef] [PubMed]
  2. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 3, 1062(1985). [CrossRef]
  3. H. C. Lefevre, in Proceedings of Seventh Optical Fiber Sensors Conference (1990), pp. 345–351.
  4. C. E. Lee and H. F. Taylor, J. Lightwave Technol. 9, 129(1991). [CrossRef]
  5. A. B. L. Ribeiro and D. A. Jackson, Rev. Sci. Instrum. 64, 2974 (1993). [CrossRef]
  6. D. Inaudi, A. Elamari, L. Pflug, N. Gisin, J. Breguet, and S. Vurpillot, Sens. Actuators A, Phys. 44, 125 (1994). [CrossRef]
  7. W. V. Sorin and D. M. Baney, IEEE Photonics Technol. Lett. 7, 917 (1995). [CrossRef]
  8. L. B. Yuan and F. Ansari, Sens. Actuators A, Phys. 63, 177 (1997). [CrossRef]
  9. L. B. Yuan, L. M. Zhou, and W. Jin, Opt. Lett. 25, 1074 (2000). [CrossRef]
  10. L. B. Yuan, L. M. Zhou, and W. Jin, Appl. Opt. 41, 7205(2002). [CrossRef] [PubMed]
  11. L. B. Yuan and Y. T. Dong, J. Intell. Mater. Syst. Struct. 20, 809 (2009). [CrossRef]
  12. L. B. Yuan, Opt. Lett. 33, 1780 (2008). [CrossRef] [PubMed]
  13. C. D. Butter and G. B. Hocker, Appl. Opt. 17, 2867 (1978). [CrossRef] [PubMed]
  14. L. B. Yuan, Opt. Laser Technol. 30, 33 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited