OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 21 — Nov. 1, 2010
  • pp: 3607–3609

Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser

G. Maisons, P. Gorrotxategi Carbajo, M. Carras, and D. Romanini  »View Author Affiliations

Optics Letters, Vol. 35, Issue 21, pp. 3607-3609 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical-feedback cavity-enhanced absorption spectroscopy is demonstrated in the mid-IR by using a quantum cascade laser (emitting at 4.46 μm ). The laser linewidth reduction and frequency locking by selective optical feedback from the resonant cavity field turns out to be particularly advantageous in this spectral range: It allows strong cavity transmission, which compensates for low light sensitivity, especially when using room-temperature detectors. We obtain a noise equivalent absorption coefficient of 3 × 10 9 /cm for 1 s averaging of spectra composed by 100 independent points. At 4.46 μm , this yields a detection limit of 35 parts in 10 12 by volume for N 2 O at 50 mbar , corresponding to 4 × 10 7 molecules / cm 3 , or still to 1 fmol in the sample volume.

© 2010 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.4780) Lasers and laser optics : Optical resonators
(280.3420) Remote sensing and sensors : Laser sensors
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 22, 2010
Revised Manuscript: September 2, 2010
Manuscript Accepted: September 12, 2010
Published: October 21, 2010

G. Maisons, P. Gorrotxategi Carbajo, M. Carras, and D. Romanini, "Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser," Opt. Lett. 35, 3607-3609 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005). [CrossRef]
  2. D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006). [CrossRef]
  3. S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, Opt. Express 14, 11442(2006). [CrossRef] [PubMed]
  4. E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, Appl. Phys. B 85, 397 (2006). [CrossRef]
  5. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Appl. Opt. 40, 5522 (2001). [CrossRef]
  6. A. A. Kosterev and F. K. Tittel, IEEE J. Quantum Electron. 38, 582 (2002). [CrossRef]
  7. K. R. Parameswaran, D. I. Rosen, M. G. Allen, A. M. Ganz, and T. H. Risby, Appl. Opt. 48, B73 (2009). [CrossRef] [PubMed]
  8. J. B. Paul, L. Lapson, and J. G. Anderson, Appl. Opt. 40, 4904 (2001). [CrossRef]
  9. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008). [CrossRef]
  10. M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, and X. Marcadet, Appl. Phys. Lett. 96, 161105 (2010). [CrossRef]
  11. P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited