OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 22 — Nov. 15, 2010
  • pp: 3763–3765

Focusing of light beyond the diffraction limit of half the wavelength

K. R. Chen  »View Author Affiliations

Optics Letters, Vol. 35, Issue 22, pp. 3763-3765 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The diffraction limit sets the smallest achievable linewidth at half the wavelength. With a subwavelength plasmonic lens allowing one to reduce the diffraction via an asymmetry and to generate and squeeze the wave functions, an incident light is focused by the aperture to a single line with its width smaller than the limited value in the intermediate zone. The focused fields are capable of propagating in free space. This light focusing process, besides being of academic interest, is expected to open up a wide range of application possibilities.

© 2010 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.0180) Imaging systems : Microscopy
(160.1245) Materials : Artificially engineered materials
(050.1965) Diffraction and gratings : Diffractive lenses
(110.4235) Imaging systems : Nanolithography
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: June 9, 2010
Revised Manuscript: September 1, 2010
Manuscript Accepted: September 25, 2010
Published: November 4, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

K. R. Chen, "Focusing of light beyond the diffraction limit of half the wavelength," Opt. Lett. 35, 3763-3765 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 2005).
  2. F. J. Duarte, Tunable Laser Optics (Academic, 2003).
  3. W. Heisenberg, The Physical Principles of the Quantum Theory (U. Chicago, 1930).
  4. R. P. Feynman, The Feynman Lectures on Physics(Addison-Wesley, 1989).
  5. M. A. Paesler and P. J. Moyer, Near-Field Optics: Theory, Instrumentation, and Applications (Wiley, 1996).
  6. S.Kawata ed., Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001). [CrossRef]
  7. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  8. X. Zhang and Z. Liu, Nat. Mater. 7, 435 (2008). [CrossRef] [PubMed]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534(2005). [CrossRef] [PubMed]
  10. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, Science 313, 1595 (2006). [CrossRef] [PubMed]
  11. D. O. S. Melville and R. J. Blaikie, Opt. Express 13, 2127(2005). [CrossRef] [PubMed]
  12. Z. W. Liu, H. Lee, C. Sun, and X. Zhang, Science 315, 1686(2007). [CrossRef] [PubMed]
  13. R. Merlin, Science 317, 927 (2007). [CrossRef] [PubMed]
  14. A. Grbic, L. Jiang, and R. Merlin, Science 320, 511(2008). [CrossRef] [PubMed]
  15. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  16. R. H. Ritchie, Phys. Rev. 106, 874 (1957). [CrossRef]
  17. J. B. Pendry, Science 285, 1687 (1999). [CrossRef]
  18. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef] [PubMed]
  19. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004). [CrossRef] [PubMed]
  20. W. Barnes and R. Sambles, Science 305, 785 (2004). [CrossRef] [PubMed]
  21. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998). [CrossRef]
  22. H. T. Liu and P. Lalanne, Nature 452, 728 (2008). [CrossRef] [PubMed]
  23. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002). [CrossRef] [PubMed]
  24. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, Appl. Phys. Lett. 83, 4500 (2003). [CrossRef]
  25. L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, Phys. Rev. Lett. 101, 113901 (2008). [CrossRef] [PubMed]
  26. H. A. Bethe, Phys. Rev. 66, 163 (1944). [CrossRef]
  27. K. R. Chen, Bull. Am. Phys. Soc. 52, 202 (2007).
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech, 2005).
  29. K. R. Chen, W. H. Chu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, S. J. Chang, F. Y. Hung, H. H. Hwuang, and A. Y.-G. Fuh, arXiv:0901.1731v1.
  30. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  31. B. Knoll and F. Keilmann, Nature 399, 134 (1999). [CrossRef]
  32. R. Hillenbrand and F. Keilmann, Phys. Rev. Lett. 85, 3029 (2000). [CrossRef] [PubMed]
  33. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Phys. Today 61, 44 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Supplementary Material

» Media 1: AVI (6024 KB)     
» Media 2: AVI (6506 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited