OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 35, Iss. 24 — Dec. 15, 2010
  • pp: 4133–4135

Multiwaveguide implantable probe for light delivery to sets of distributed brain targets

Anthony N. Zorzos, Edward S. Boyden, and Clifton G. Fonstad  »View Author Affiliations


Optics Letters, Vol. 35, Issue 24, pp. 4133-4135 (2010)
http://dx.doi.org/10.1364/OL.35.004133


View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical fibers are commonly inserted into living tissues such as the brain in order to deliver light to deep targets for neuroscientific and neuroengineering applications such as optogenetics, in which light is used to activate or silence neurons expressing specific photosensitive proteins. However, an optical fiber is limited to delivering light to a single target within the three-dimensional structure of the brain. We here demonstrate a multiwaveguide probe capable of independently delivering light to multiple targets along the probe axis, thus enabling versatile optical control of sets of distributed brain targets. The 1.45-cm-long probe is microfabricated in the form of a 360-μm-wide array of 12 parallel silicon oxynitride (SiON) multimode waveguides clad with SiO 2 and coated with aluminum; probes of custom dimensions are easily created as well. The waveguide array accepts light from a set of sources at the input end and guides the light down each waveguide to an aluminum corner mirror that efficiently deflects light away from the probe axis. Light losses at each stage are small (input coupling loss, 0.4 ± 0.3 dB ; bend loss, negligible; propagation loss, 3.1 ± 1 dB / cm using the outscattering method and 3.2 ± 0.4 dB / cm using the cutback method; corner mirror loss, 1.5 ± 0.4 dB ); a waveguide coupled, for example, to a 5 mW source will deliver over 1.5 mW to a target at a depth of 1 cm .

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(130.2755) Integrated optics : Glass waveguides
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: September 9, 2010
Manuscript Accepted: October 20, 2010
Published: December 8, 2010

Citation
Anthony N. Zorzos, Edward S. Boyden, and Clifton G. Fonstad, "Multiwaveguide implantable probe for light delivery to sets of distributed brain targets," Opt. Lett. 35, 4133-4135 (2010)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-24-4133


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, Nat. Neurosci. 8, 1263 (2005). [CrossRef] [PubMed]
  2. X. Han and E. S. Boyden, PLoS ONE 2, e299 (2007). [CrossRef] [PubMed]
  3. F. Zhang, L. P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, Nature 446, 633 (2007). [CrossRef] [PubMed]
  4. B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, Nature 463, 98 (2010). [CrossRef] [PubMed]
  5. X. Han, X. Qian, J. G. Bernstein, H. H. Zhou, G. T. Franzesi, P. Stern, R. T. Bronson, A. M. Graybiel, R. Desimone, and E. S. Boyden, Neuron 62, 191 (2009). [CrossRef] [PubMed]
  6. M. Hoffmann, P. Kopka, and E. Voges, IEEE Photonics Technol. Lett. 9, 1238 (1997). [CrossRef]
  7. K. W. Renee, M. de Ridder, A. Driessen, P. V. Lambeck, and H. Albers, IEEE J. Sel. Top. Quantum Electron. 4, 930 (1998). [CrossRef]
  8. K. Worhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and T. J. A. Popma, Sens. Actuators A 74, 9 (1999). [CrossRef]
  9. K. Worhoff, P. V. Lambek, and A. Driessen, J. Lightwave Technol. 17, 1401 (1999). [CrossRef]
  10. T. Barwicz and H. A. Haus, J. Lightwave Technol. 23, 2719 (2005). [CrossRef]
  11. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006). [CrossRef]
  12. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, Opt Lett. 28, 1150 (2003). [CrossRef] [PubMed]
  13. Y. Qian, S. Kim, J. Song, and G. P. Nordin, Opt. Express 14, 6020 (2006). [CrossRef] [PubMed]
  14. Y. Okamura, S. Yoshinaka, and S. Yamamoto, Appl. Opt. 22, 3892 (1983). [CrossRef] [PubMed]
  15. V. Subramaniam, G. N. DeBrabander, D. H. Naghski, and J. T. Boyd, J. Lightwave Technol. 15, 990 (1997). [CrossRef]
  16. G. T. Reed, in IEEE Colloquium on Measurements on Optical Devices (IEEE, 1992), pp. 2/1–2/7.
  17. A. L. Zhang and K. T. Chan, in Proceedings of the Sixth Chinese Optoelectronics Symposium (IEEE, 2003), Vols. 124–127, p. 296.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited