OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 35, Iss. 24 — Dec. 15, 2010
  • pp: 4133–4135

Multiwaveguide implantable probe for light delivery to sets of distributed brain targets

Anthony N. Zorzos, Edward S. Boyden, and Clifton G. Fonstad  »View Author Affiliations


Optics Letters, Vol. 35, Issue 24, pp. 4133-4135 (2010)
http://dx.doi.org/10.1364/OL.35.004133


View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical fibers are commonly inserted into living tissues such as the brain in order to deliver light to deep targets for neuroscientific and neuroengineering applications such as optogenetics, in which light is used to activate or silence neurons expressing specific photosensitive proteins. However, an optical fiber is limited to delivering light to a single target within the three-dimensional structure of the brain. We here demonstrate a multiwaveguide probe capable of independently delivering light to multiple targets along the probe axis, thus enabling versatile optical control of sets of distributed brain targets. The 1.45-cm-long probe is microfabricated in the form of a 360-μm-wide array of 12 parallel silicon oxynitride (SiON) multimode waveguides clad with SiO 2 and coated with aluminum; probes of custom dimensions are easily created as well. The waveguide array accepts light from a set of sources at the input end and guides the light down each waveguide to an aluminum corner mirror that efficiently deflects light away from the probe axis. Light losses at each stage are small (input coupling loss, 0.4 ± 0.3 dB ; bend loss, negligible; propagation loss, 3.1 ± 1 dB / cm using the outscattering method and 3.2 ± 0.4 dB / cm using the cutback method; corner mirror loss, 1.5 ± 0.4 dB ); a waveguide coupled, for example, to a 5 mW source will deliver over 1.5 mW to a target at a depth of 1 cm .

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(130.2755) Integrated optics : Glass waveguides
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: September 9, 2010
Manuscript Accepted: October 20, 2010
Published: December 8, 2010

Citation
Anthony N. Zorzos, Edward S. Boyden, and Clifton G. Fonstad, "Multiwaveguide implantable probe for light delivery to sets of distributed brain targets," Opt. Lett. 35, 4133-4135 (2010)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-24-4133

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited