OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 35, Iss. 5 — Mar. 1, 2010
  • pp: 676–678

Design of binary subwavelength multiphase level computer generated holograms

Wiebke Freese, Thomas Kämpfe, Ernst-Bernhard Kley, and Andreas Tünnermann  »View Author Affiliations

Optics Letters, Vol. 35, Issue 5, pp. 676-678 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability of subwavelength structures to create an artificial effective index opens up new perspectives in designing highly efficient diffractive optical elements. We demonstrate a design approach for binary multi-phase level computer generated holograms based on the effective medium approach. The phase pattern is formed by various subwavelength structures that cause a certain phase delay to an incident light wave. This binary structure approach leads to a significant cost reduction by simplifying the fabrication process. For demonstration, a three-phase level element, operating in the visible range, is fabricated and experimentally evaluated.

© 2010 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(090.1970) Holography : Diffractive optics
(090.2890) Holography : Holographic optical elements
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: October 29, 2009
Revised Manuscript: January 11, 2010
Manuscript Accepted: January 26, 2010
Published: February 24, 2010

Wiebke Freese, Thomas Kämpfe, Ernst-Bernhard Kley, and Andreas Tünnermann, "Design of binary subwavelength multiphase level computer generated holograms," Opt. Lett. 35, 676-678 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Mait, D. W. Prather, and M. S. Mirotznik, J. Opt. Soc. Am. A 16, 1157 (1999). [CrossRef]
  2. F. T. Chen and H. G. CraigheadOpt. Lett. 21, 177 (2007). [CrossRef]
  3. M. W. Farn, Appl. Opt. 31, 4453 (1992). [CrossRef] [PubMed]
  4. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, Opt. Lett. 23, 552 (1998). [CrossRef]
  5. C. Sauvan, P. Lalanne, and M.-S. L. Lee, Opt. Lett. 29, 1593 (2004). [CrossRef] [PubMed]
  6. C. Ribot, P. Lalanne, M. S. L. Lee, B. Loiseaux, andJ. P. Huignard, J. Opt. Soc. Am. A 24, 3819 (2007). [CrossRef]
  7. E.-B. Kley, W. Freese, U. D. Zeitner, D. Michaelis,T. Kämpfe, M. Erdmann, and A. Tünnermann, in Proceedings of IEEE/LEOS International Conference on Optical MEMS & Nanophotonics (IEEE/LEOS, 2009), pp. 148-149. [CrossRef]
  8. P. Lalanne and D. Lemercier-Lalanne, J. Mod. Opt. 43, 2063 (1996). [CrossRef]
  9. E. B. Grann and M. G. Moharam, Appl. Opt. 35, 795 (1996). [CrossRef] [PubMed]
  10. W. Yu, K. Takahara, T. Konishi, T. Yotsuya, and Y. Ichioka, Appl. Opt. 39, 3531 (2000). [CrossRef]
  11. F. Wyrowski and O. Bryngdahl, Rep. Prog. Phys. 54, 1481 (1991). [CrossRef]
  12. P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited